These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 24634812)

  • 1. TISSUE ENGINEERING PERFUSABLE CANCER MODELS.
    Fong EL; Santoro M; Farach-Carson MC; Kasper FK; Mikos AG
    Curr Opin Chem Eng; 2014 Feb; 3():112-117. PubMed ID: 24634812
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic in vitro models for tumor tissue engineering.
    Karami D; Richbourg N; Sikavitsas V
    Cancer Lett; 2019 May; 449():178-185. PubMed ID: 30763717
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vascularized microfluidic platforms to mimic the tumor microenvironment.
    Michna R; Gadde M; Ozkan A; DeWitt M; Rylander M
    Biotechnol Bioeng; 2018 Nov; 115(11):2793-2806. PubMed ID: 29940072
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional cell culture model for measuring the effects of interstitial fluid flow on tumor cell invasion.
    Tchafa AM; Shah AD; Wang S; Duong MT; Shieh AC
    J Vis Exp; 2012 Jul; (65):. PubMed ID: 22872144
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Composable microfluidic spinning platforms for facile production of biomimetic perfusable hydrogel microtubes.
    Xie R; Liang Z; Ai Y; Zheng W; Xiong J; Xu P; Liu Y; Ding M; Gao J; Wang J; Liang Q
    Nat Protoc; 2021 Feb; 16(2):937-964. PubMed ID: 33318693
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomimetic Microfluidic Platforms for the Assessment of Breast Cancer Metastasis.
    Sigdel I; Gupta N; Faizee F; Khare VM; Tiwari AK; Tang Y
    Front Bioeng Biotechnol; 2021; 9():633671. PubMed ID: 33777909
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Going with the flow: microfluidic platforms in vascular tissue engineering.
    Smith Q; Gerecht S
    Curr Opin Chem Eng; 2014 Feb; 3():42-50. PubMed ID: 24644533
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The matrix environmental and cell mechanical properties regulate cell migration and contribute to the invasive phenotype of cancer cells.
    Mierke CT
    Rep Prog Phys; 2019 Jun; 82(6):064602. PubMed ID: 30947151
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering of functional, perfusable 3D microvascular networks on a chip.
    Kim S; Lee H; Chung M; Jeon NL
    Lab Chip; 2013 Apr; 13(8):1489-500. PubMed ID: 23440068
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro modeling of solid tumor interactions with perfused blood vessels.
    Kwak TJ; Lee E
    Sci Rep; 2020 Nov; 10(1):20142. PubMed ID: 33214583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering Tissue Barrier Models on Hydrogel Microfluidic Platforms.
    Vera D; García-Díaz M; Torras N; Álvarez M; Villa R; Martinez E
    ACS Appl Mater Interfaces; 2021 Mar; 13(12):13920-13933. PubMed ID: 33739812
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of interstitial pressure on tumor growth: coupling with the blood and lymphatic vascular systems.
    Wu M; Frieboes HB; McDougall SR; Chaplain MA; Cristini V; Lowengrub J
    J Theor Biol; 2013 Mar; 320():131-51. PubMed ID: 23220211
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic culture models to study the hydrodynamics of tumor progression and therapeutic response.
    Buchanan C; Rylander MN
    Biotechnol Bioeng; 2013 Aug; 110(8):2063-72. PubMed ID: 23616255
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidics-based in vivo mimetic systems for the study of cellular biology.
    Kim D; Wu X; Young AT; Haynes CL
    Acc Chem Res; 2014 Apr; 47(4):1165-73. PubMed ID: 24555566
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Organ-on-a-chip technology and microfluidic whole-body models for pharmacokinetic drug toxicity screening.
    Lee JB; Sung JH
    Biotechnol J; 2013 Nov; 8(11):1258-66. PubMed ID: 24038956
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Micro-engineered perfusable 3D vasculatures for cardiovascular diseases.
    Menon NV; Tay HM; Wee SN; Li KHH; Hou HW
    Lab Chip; 2017 Aug; 17(17):2960-2968. PubMed ID: 28740980
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microengineered tumor models: insights & opportunities from a physical sciences-oncology perspective.
    DelNero P; Song YH; Fischbach C
    Biomed Microdevices; 2013 Aug; 15(4):583-593. PubMed ID: 23559404
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidic Biopsy Trapping Device for the Real-Time Monitoring of Tumor Microenvironment.
    Holton AB; Sinatra FL; Kreahling J; Conway AJ; Landis DA; Altiok S
    PLoS One; 2017; 12(1):e0169797. PubMed ID: 28085924
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering tissue with BioMEMS.
    Borenstein JT; Vunjak-Novakovic G
    IEEE Pulse; 2011 Nov; 2(6):28-34. PubMed ID: 22147066
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of tumor invasion by interstitial fluid flow.
    Shieh AC; Swartz MA
    Phys Biol; 2011 Feb; 8(1):015012. PubMed ID: 21301060
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.