These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 24635015)

  • 1. A novel pentiptycene bis(crown ether)-based [2](2)rotaxane whose two DB24C8 rings act as flapping wings of a butterfly.
    Ma YX; Meng Z; Chen CF
    Org Lett; 2014 Apr; 16(7):1860-3. PubMed ID: 24635015
    [TBL] [Abstract][Full Text] [Related]  

  • 2. N-benzyltriazolium as both molecular station and barrier in [2]rotaxane molecular machines.
    Busseron E; Coutrot F
    J Org Chem; 2013 Apr; 78(8):4099-106. PubMed ID: 23521611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A musclelike [2](2)rotaxane: synthesis, performance, and molecular dynamics simulations.
    Li H; Li X; Wu Y; Agren H; Qu DH
    J Org Chem; 2014 Aug; 79(15):6996-7004. PubMed ID: 25028771
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-assembly of a supramolecular network with pseudo-rotaxane cross-linking nodes and its transformation into a mechanically locked structure by rotaxane formation.
    Soto MA; Tiburcio J
    Chem Commun (Camb); 2016 Dec; 52(98):14149-14152. PubMed ID: 27869280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation of a "pseudosuitane"-type complex between a triptycene-derived bis(crown ether) host and 1,1'-(anthracene-9,10-diyl)bis(N-benzylmethanaminium): a new method for the synthesis of linear polyrotaxanes.
    Zeng F; Meng Z; Han Y; Chen CF
    Chem Commun (Camb); 2014 Jul; 50(57):7611-3. PubMed ID: 24889276
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A strategy utilizing a recyclable macrocycle transporter for the efficient synthesis of a triazolium-based [2]rotaxane.
    Chao S; Romuald C; Fournel-Marotte K; Clavel C; Coutrot F
    Angew Chem Int Ed Engl; 2014 Jul; 53(27):6914-9. PubMed ID: 24910397
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A [2]rota[2]catenane, constructed from a pillar[5]arene-crown ether fused double-cavity macrocycle: synthesis and structural characterization.
    Hu WB; Hu WJ; Zhao XL; Liu YA; Li JS; Jiang B; Wen K
    Chem Commun (Camb); 2015 Sep; 51(73):13882-5. PubMed ID: 26225550
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Complexation between pentiptycene-based mono(crown ether)s and tetracationic cyclobis(paraquat-p-phenylene): who is the host or the guest?
    Cao J; Lu HY; Xiang JF; Chen CF
    Chem Commun (Camb); 2010 May; 46(20):3586-8. PubMed ID: 20361099
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-Assembly of Stimuli-Responsive [2]Rotaxanes by Amidinium Exchange.
    Borodin O; Shchukin Y; Robertson CC; Richter S; von Delius M
    J Am Chem Soc; 2021 Oct; 143(40):16448-16457. PubMed ID: 34559523
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coordination-driven self-assembly of cavity-cored multiple crown ether derivatives and poly[2]pseudorotaxanes.
    Ghosh K; Yang HB; Northrop BH; Lyndon MM; Zheng YR; Muddiman DC; Stang PJ
    J Am Chem Soc; 2008 Apr; 130(15):5320-34. PubMed ID: 18341280
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rotaxanes with fluorocarbon blocking groups.
    Mahan EJ; Dennis JA
    Org Lett; 2006 Oct; 8(22):5085-8. PubMed ID: 17048849
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel triptycene-based cylindrical macrotricyclic host: synthesis and complexation with paraquat derivatives.
    Zong QS; Chen CF
    Org Lett; 2006 Jan; 8(2):211-4. PubMed ID: 16408877
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sequential O- and N-acylation protocol for high-yield preparation and modification of rotaxanes: synthesis, functionalization, structure, and intercomponent interaction of rotaxanes.
    Tachibana Y; Kawasaki H; Kihara N; Takata T
    J Org Chem; 2006 Jul; 71(14):5093-104. PubMed ID: 16808495
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 'Click' functionalised polymer resins: a new approach to the synthesis of surface attached bipyridinium and naphthalene diimide [2]rotaxanes.
    Wilson H; Byrne S; Bampos N; Mullen KM
    Org Biomol Chem; 2013 Apr; 11(13):2105-15. PubMed ID: 23380978
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two Stepwise Synthetic Routes toward a Hetero[4]rotaxane.
    Luo QF; Zhu L; Rao SJ; Li H; Miao Q; Qu DH
    J Org Chem; 2015 May; 80(9):4704-9. PubMed ID: 25874382
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three protocols for the formation of a [3]pseudorotaxane via orthogonal cryptand-based host-guest recognition and coordination-driven self-assembly.
    Li J; Wei P; Wu X; Xue M; Yan X
    Org Lett; 2013 Oct; 15(19):4984-7. PubMed ID: 24059808
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Parking and restarting a molecular shuttle in situ.
    Chen NC; Lai CC; Liu YH; Peng SM; Chiu SH
    Chemistry; 2008; 14(9):2904-8. PubMed ID: 18213659
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular switch based on very weak association between BPX26C6 and two recognition units.
    Lu TW; Chang CF; Lai CC; Chiu SH
    Org Lett; 2013 Nov; 15(22):5742-5. PubMed ID: 24171404
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactions in pseudorotoxanes based on crown ether-secondary ammonium motifs. A theoretical study.
    Ramero C; Guadarrama P; Fomine S
    J Mol Model; 2005 Dec; 12(1):85-92. PubMed ID: 16096804
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Na+ ion templated threading of oligo(ethylene glycol) chains through BPX26C6 allows synthesis of [2]rotaxanes under solvent-free conditions.
    Wu KD; Lin YH; Lai CC; Chiu SH
    Org Lett; 2014 Feb; 16(4):1068-71. PubMed ID: 24499390
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.