These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 24635163)

  • 1. B-doped Pd catalyst: boosting room-temperature hydrogen production from formic acid-formate solutions.
    Jiang K; Xu K; Zou S; Cai WB
    J Am Chem Soc; 2014 Apr; 136(13):4861-4. PubMed ID: 24635163
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Small Addition of Boron in Palladium Catalyst, Big Improvement in Fuel Cell's Performance: What May Interfacial Spectroelectrochemistry Tell?
    Jiang K; Chang J; Wang H; Brimaud S; Xing W; Behm RJ; Cai WB
    ACS Appl Mater Interfaces; 2016 Mar; 8(11):7133-8. PubMed ID: 26938473
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Boosting Formate Production in Electrocatalytic CO
    Jiang B; Zhang XG; Jiang K; Wu DY; Cai WB
    J Am Chem Soc; 2018 Feb; 140(8):2880-2889. PubMed ID: 29409320
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Palladium Catalyst Supported on Boron-Doped Porous Carbon for Efficient Dehydrogenation of Formic Acid.
    Liu H; Huang M; Tao W; Han L; Zhang J; Zhao Q
    Nanomaterials (Basel); 2024 Mar; 14(6):. PubMed ID: 38535697
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pd/C synthesized with citric acid: an efficient catalyst for hydrogen generation from formic acid/sodium formate.
    Wang ZL; Yan JM; Wang HL; Ping Y; Jiang Q
    Sci Rep; 2012; 2():598. PubMed ID: 22953041
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dehydrogenation of Formic Acid at Room Temperature: Boosting Palladium Nanoparticle Efficiency by Coupling with Pyridinic-Nitrogen-Doped Carbon.
    Bi QY; Lin JD; Liu YM; He HY; Huang FQ; Cao Y
    Angew Chem Int Ed Engl; 2016 Sep; 55(39):11849-53. PubMed ID: 27552650
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surfactant-Free Synthesis of Carbon-Supported Palladium Nanoparticles and Size-Dependent Hydrogen Production from Formic Acid-Formate Solution.
    Zhang S; Jiang B; Jiang K; Cai WB
    ACS Appl Mater Interfaces; 2017 Jul; 9(29):24678-24687. PubMed ID: 28658569
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly Active Carbon Supported Pd-Ag Nanofacets Catalysts for Hydrogen Production from HCOOH.
    Wang W; He T; Liu X; He W; Cong H; Shen Y; Yan L; Zhang X; Zhang J; Zhou X
    ACS Appl Mater Interfaces; 2016 Aug; 8(32):20839-48. PubMed ID: 27454194
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Methanol-Water Aqueous-Phase Reforming with the Assistance of Dehydrogenases at Near-Room Temperature.
    Shen Y; Zhan Y; Li S; Ning F; Du Y; Huang Y; He T; Zhou X
    ChemSusChem; 2018 Mar; 11(5):864-871. PubMed ID: 29327513
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Construction of H-Doped PdB Nanocrystals as Electrocatalysts to Modulate Formic Acid Oxidation.
    Li H; Zhou S; Liu J; Wang W; Chen A; Sheng L; Zhao J; Li Y; Sui Y; Zou B
    Adv Sci (Weinh); 2024 Jul; ():e2403813. PubMed ID: 38981017
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrogen liberation from the hydrolytic dehydrogenation of dimethylamine-borane at room temperature by using a novel ruthenium nanocatalyst.
    Caliskan S; Zahmakiran M; Durap F; Özkar S
    Dalton Trans; 2012 Apr; 41(16):4976-84. PubMed ID: 22410969
    [TBL] [Abstract][Full Text] [Related]  

  • 12. N-Doped graphene-supported PdCu nanoalloy as efficient catalyst for reducing Cr(vi) by formic acid.
    Li S; Liu L; Zhao Q; He C; Liu W
    Phys Chem Chem Phys; 2018 Jan; 20(5):3457-3464. PubMed ID: 29334086
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced catalytic dehydrogenation of LiBH(4) by carbon-supported Pd nanoparticles.
    Xu J; Yu X; Ni J; Zou Z; Li Z; Yang H
    Dalton Trans; 2009 Oct; (39):8386-91. PubMed ID: 19789792
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synergistic Combination of Fermi Level Equilibrium and Plasmonic Effect for Formic Acid Dehydrogenation.
    Zhu J; Huang J; Dai J; Jiang L; Xu Y; Chen R; Li L; Fu X; Wang Z; Liu H; Li G
    ChemSusChem; 2023 Mar; 16(6):e202202069. PubMed ID: 36537011
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anchoring and Upgrading Ultrafine NiPd on Room-Temperature-Synthesized Bifunctional NH
    Yan JM; Li SJ; Yi SS; Wulan BR; Zheng WT; Jiang Q
    Adv Mater; 2018 Mar; 30(12):e1703038. PubMed ID: 29411459
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural design and facile synthesis of a highly efficient catalyst for formic acid electrooxidation.
    Wang XM; Wang ME; Zhou DD; Xia YY
    Phys Chem Chem Phys; 2011 Aug; 13(30):13594-7. PubMed ID: 21701741
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of promoter on the catalytic activity of high performance Pd/PATP catalysts.
    Han W; Zhang P; Pan X; Tang Z; Lu G
    J Hazard Mater; 2013 Dec; 263 Pt 2():299-306. PubMed ID: 24225591
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Iron-catalyzed hydrogen production from formic acid.
    Boddien A; Loges B; Gärtner F; Torborg C; Fumino K; Junge H; Ludwig R; Beller M
    J Am Chem Soc; 2010 Jul; 132(26):8924-34. PubMed ID: 20550131
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mg(2+)-assisted low temperature reduction of alloyed AuPd/C: an efficient catalyst for hydrogen generation from formic acid at room temperature.
    Wu S; Yang F; Wang H; Chen R; Sun P; Chen T
    Chem Commun (Camb); 2015 Jul; 51(54):10887-90. PubMed ID: 26055694
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catalytic activity of Pd-doped Cu nanoparticles for hydrogenation as a single-atom-alloy catalyst.
    Cao X; Fu Q; Luo Y
    Phys Chem Chem Phys; 2014 May; 16(18):8367-75. PubMed ID: 24658397
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.