These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 24635482)
1. Development of a chronic fish toxicity model for predicting sub-lethal NOEC values for non-polar narcotics. Austin TJ; Eadsforth CV SAR QSAR Environ Res; 2014; 25(2):147-60. PubMed ID: 24635482 [TBL] [Abstract][Full Text] [Related]
2. European Chemicals Agency dossier submissions as an experimental data source: refinement of a fish toxicity model for predicting acute LC50 values. Austin T; Denoyelle M; Chaudry A; Stradling S; Eadsforth C Environ Toxicol Chem; 2015 Feb; 34(2):369-78. PubMed ID: 25470737 [TBL] [Abstract][Full Text] [Related]
3. Qsar investigation of a large data set for fish, algae and Daphnia toxicity. Lessigiarska I; Wortha AP; Sokull-Klüttgen B; Jeram S; Dearden JC; Netzeva TI; Cronin MT SAR QSAR Environ Res; 2004; 15(5-6):413-31. PubMed ID: 15669699 [TBL] [Abstract][Full Text] [Related]
4. Development and validation of a quantitative structure-activity relationship for chronic narcosis to fish. Claeys L; Iaccino F; Janssen CR; Van Sprang P; Verdonck F Environ Toxicol Chem; 2013 Oct; 32(10):2217-25. PubMed ID: 23775559 [TBL] [Abstract][Full Text] [Related]
5. Quantitative structure-activity relationship for aromatic hydrocarbons on freshwater fish. Di Marzio W; Saenz ME Ecotoxicol Environ Saf; 2004 Oct; 59(2):256-62. PubMed ID: 15327885 [TBL] [Abstract][Full Text] [Related]
6. Quantitative Structure-Activity Relationships of Aquatic Narcosis: A Review. Adhikari C; Mishra BK Curr Comput Aided Drug Des; 2018; 14(1):7-28. PubMed ID: 28699497 [TBL] [Abstract][Full Text] [Related]
7. Prediction of the baseline toxicity of non-polar narcotic chemical mixtures by QSAR approach. Luan F; Xu X; Liu H; Cordeiro MN Chemosphere; 2013 Feb; 90(6):1980-6. PubMed ID: 23177708 [TBL] [Abstract][Full Text] [Related]
8. Quantitative structure-activity relationship to predict acute fish toxicity of organic solvents. Levet A; Bordes C; Clément Y; Mignon P; Chermette H; Marote P; Cren-Olivé C; Lantéri P Chemosphere; 2013 Oct; 93(6):1094-103. PubMed ID: 23866172 [TBL] [Abstract][Full Text] [Related]
9. Promises and pitfalls of quantitative structure-activity relationship approaches for predicting metabolism and toxicity. Zvinavashe E; Murk AJ; Rietjens IM Chem Res Toxicol; 2008 Dec; 21(12):2229-36. PubMed ID: 19548346 [TBL] [Abstract][Full Text] [Related]
10. Applicability of the fish embryo acute toxicity (FET) test (OECD 236) in the regulatory context of Registration, Evaluation, Authorisation, and Restriction of Chemicals (REACH). Sobanska M; Scholz S; Nyman AM; Cesnaitis R; Gutierrez Alonso S; Klüver N; Kühne R; Tyle H; de Knecht J; Dang Z; Lundbergh I; Carlon C; De Coen W Environ Toxicol Chem; 2018 Mar; 37(3):657-670. PubMed ID: 29226368 [TBL] [Abstract][Full Text] [Related]
11. The utility of QSARs in predicting acute fish toxicity of pesticide metabolites: A retrospective validation approach. Burden N; Maynard SK; Weltje L; Wheeler JR Regul Toxicol Pharmacol; 2016 Oct; 80():241-6. PubMed ID: 27235557 [TBL] [Abstract][Full Text] [Related]
12. Definition of the structural domain of the baseline non-polar narcosis model for Tetrahymena pyriformis. Ellison CM; Cronin MT; Madden JC; Schultz TW SAR QSAR Environ Res; 2008; 19(7-8):751-83. PubMed ID: 19061087 [TBL] [Abstract][Full Text] [Related]
13. Quantitative structure-activity relationships for estimating the no-observable-effects concentration in fathead minnows (Pimephales promelas). Jones SL; Schultz TW Qual Assur; 1995 Sep; 4(3):187-203. PubMed ID: 8705114 [TBL] [Abstract][Full Text] [Related]
14. Measurement of baseline toxicity and QSAR analysis of 50 non-polar and 58 polar narcotic chemicals for the alga Pseudokirchneriella subcapitata. Aruoja V; Moosus M; Kahru A; Sihtmäe M; Maran U Chemosphere; 2014 Feb; 96():23-32. PubMed ID: 23895738 [TBL] [Abstract][Full Text] [Related]
15. Toxicity of organic pollutants to seven aquatic organisms: effect of polarity and ionization. Qin WC; Su LM; Zhang XJ; Qin HW; Wen Y; Guo Z; Sun FT; Sheng LX; Zhao YH; Abraham MH SAR QSAR Environ Res; 2010 Jul; 21(5-6):389-401. PubMed ID: 20818578 [TBL] [Abstract][Full Text] [Related]
16. An alternative QSAR-based approach for predicting the bioconcentration factor for regulatory purposes. Gissi A; Gadaleta D; Floris M; Olla S; Carotti A; Novellino E; Benfenati E; Nicolotti O ALTEX; 2014; 31(1):23-36. PubMed ID: 24247988 [TBL] [Abstract][Full Text] [Related]
17. Comparison between bioconcentration factor (BCF) data provided by industry to the European Chemicals Agency (ECHA) and data derived from QSAR models. Petoumenou MI; Pizzo F; Cester J; Fernández A; Benfenati E Environ Res; 2015 Oct; 142():529-34. PubMed ID: 26282223 [TBL] [Abstract][Full Text] [Related]
18. Ranking of concern, based on environmental indexes, for pharmaceutical and personal care products: an application to the Spanish case. Ortiz de García S; Pinto GP; García-Encina PA; Irusta Mata RI J Environ Manage; 2013 Nov; 129():384-97. PubMed ID: 23995140 [TBL] [Abstract][Full Text] [Related]
19. Validation of a QSAR model for acute toxicity. Pavan M; Netzeva TI; Worth AP SAR QSAR Environ Res; 2006 Apr; 17(2):147-71. PubMed ID: 16644555 [TBL] [Abstract][Full Text] [Related]
20. Exploring an ecotoxicity database with the OECD (Q)SAR Toolbox and DRAGON descriptors in order to prioritise testing on algae, daphnids, and fish. Tebby C; Mombelli E; Pandard P; Péry AR Sci Total Environ; 2011 Aug; 409(18):3334-43. PubMed ID: 21684579 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]