These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
249 related articles for article (PubMed ID: 24635509)
1. Mechanisms of the inward remodeling process in resistance vessels: is the actin cytoskeleton involved? Castorena-Gonzalez JA; Staiculescu MC; Foote C; Martinez-Lemus LA Microcirculation; 2014 Apr; 21(3):219-29. PubMed ID: 24635509 [TBL] [Abstract][Full Text] [Related]
2. Prolonged vasoconstriction of resistance arteries involves vascular smooth muscle actin polymerization leading to inward remodelling. Staiculescu MC; Galiñanes EL; Zhao G; Ulloa U; Jin M; Beig MI; Meininger GA; Martinez-Lemus LA Cardiovasc Res; 2013 Jun; 98(3):428-36. PubMed ID: 23417038 [TBL] [Abstract][Full Text] [Related]
3. The obligatory role of the actin cytoskeleton on inward remodeling induced by dithiothreitol activation of endogenous transglutaminase in isolated arterioles. Castorena-Gonzalez JA; Staiculescu MC; Foote CA; Polo-Parada L; Martinez-Lemus LA Am J Physiol Heart Circ Physiol; 2014 Feb; 306(4):H485-95. PubMed ID: 24337457 [TBL] [Abstract][Full Text] [Related]
4. LIMK (LIM Kinase) Inhibition Prevents Vasoconstriction- and Hypertension-Induced Arterial Stiffening and Remodeling. Morales-Quinones M; Ramirez-Perez FI; Foote CA; Ghiarone T; Ferreira-Santos L; Bloksgaard M; Spencer N; Kimchi ET; Manrique-Acevedo C; Padilla J; Martinez-Lemus LA Hypertension; 2020 Aug; 76(2):393-403. PubMed ID: 32594801 [TBL] [Abstract][Full Text] [Related]
5. Brief serotonin exposure initiates arteriolar inward remodeling processes in vivo that involve transglutaminase activation and actin cytoskeleton reorganization. Foote CA; Castorena-Gonzalez JA; Staiculescu MC; Clifford PS; Hill MA; Meininger GA; Martinez-Lemus LA Am J Physiol Heart Circ Physiol; 2016 Jan; 310(2):H188-98. PubMed ID: 26566730 [TBL] [Abstract][Full Text] [Related]
6. Small artery remodeling depends on tissue-type transglutaminase. Bakker EN; Buus CL; Spaan JA; Perree J; Ganga A; Rolf TM; Sorop O; Bramsen LH; Mulvany MJ; Vanbavel E Circ Res; 2005 Jan; 96(1):119-26. PubMed ID: 15550691 [TBL] [Abstract][Full Text] [Related]
7. Deciphering actin cytoskeletal function in the contractile vascular smooth muscle cell. Yamin R; Morgan KG J Physiol; 2012 Sep; 590(17):4145-54. PubMed ID: 22687615 [TBL] [Abstract][Full Text] [Related]
8. Smooth muscle biomechanics and plasticity: relevance for vascular calibre and remodelling. Tuna BG; Bakker EN; VanBavel E Basic Clin Pharmacol Toxicol; 2012 Jan; 110(1):35-41. PubMed ID: 21902815 [TBL] [Abstract][Full Text] [Related]
9. Inward remodeling of resistance arteries requires reactive oxygen species-dependent activation of matrix metalloproteinases. Martinez-Lemus LA; Zhao G; Galiñanes EL; Boone M Am J Physiol Heart Circ Physiol; 2011 Jun; 300(6):H2005-15. PubMed ID: 21460197 [TBL] [Abstract][Full Text] [Related]
10. The role of reactive oxygen species in microvascular remodeling. Staiculescu MC; Foote C; Meininger GA; Martinez-Lemus LA Int J Mol Sci; 2014 Dec; 15(12):23792-835. PubMed ID: 25535075 [TBL] [Abstract][Full Text] [Related]
11. The plastic nature of the vascular wall: a continuum of remodeling events contributing to control of arteriolar diameter and structure. Martinez-Lemus LA; Hill MA; Meininger GA Physiology (Bethesda); 2009 Feb; 24():45-57. PubMed ID: 19196651 [TBL] [Abstract][Full Text] [Related]
12. The redox state of transglutaminase 2 controls arterial remodeling. van den Akker J; VanBavel E; van Geel R; Matlung HL; Guvenc Tuna B; Janssen GM; van Veelen PA; Boelens WC; De Mey JG; Bakker EN PLoS One; 2011; 6(8):e23067. PubMed ID: 21901120 [TBL] [Abstract][Full Text] [Related]
13. Current opinions on the control and role of vascular smooth muscle cell adhesion, calcium sensitization, and the cytoskeleton in vascular structure and function. Martinez-Lemus LA Microcirculation; 2014 Apr; 21(3):197-200. PubMed ID: 24654930 [TBL] [Abstract][Full Text] [Related]
14. Relation between active and passive biomechanics of small mesenteric arteries during remodeling. Tuna BG; Bakker EN; VanBavel E J Biomech; 2013 May; 46(8):1420-6. PubMed ID: 23566877 [TBL] [Abstract][Full Text] [Related]
15. Activation of extracellular transglutaminase 2 by mechanical force in the arterial wall. Huelsz-Prince G; Belkin AM; VanBavel E; Bakker EN J Vasc Res; 2013; 50(5):383-95. PubMed ID: 23988702 [TBL] [Abstract][Full Text] [Related]
16. Cerebral Artery Remodeling in Rodent Models of Subarachnoid Hemorrhage. Guvenc Tuna B; Lachkar N; de Vos J; Bakker EN; VanBavel E J Vasc Res; 2015; 52(2):103-15. PubMed ID: 26184661 [TBL] [Abstract][Full Text] [Related]
18. Cytoskeletal effects of rho-like small guanine nucleotide-binding proteins in the vascular system. van Nieuw Amerongen GP; van Hinsbergh VW Arterioscler Thromb Vasc Biol; 2001 Mar; 21(3):300-11. PubMed ID: 11231907 [TBL] [Abstract][Full Text] [Related]
19. Mechanics and composition of human subcutaneous resistance arteries in essential hypertension. Intengan HD; Deng LY; Li JS; Schiffrin EL Hypertension; 1999 Jan; 33(1 Pt 2):569-74. PubMed ID: 9931167 [TBL] [Abstract][Full Text] [Related]