BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 24635730)

  • 1. Effects of molecular composition of natural organic matter on ferric iron complexation at circumneutral pH.
    Fujii M; Imaoka A; Yoshimura C; Waite TD
    Environ Sci Technol; 2014 Apr; 48(8):4414-24. PubMed ID: 24635730
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Variation of iron redox kinetics and its relation with molecular composition of standard humic substances at circumneutral pH.
    Lee YP; Fujii M; Kikuchi T; Terao K; Yoshimura C
    PLoS One; 2017; 12(4):e0176484. PubMed ID: 28453538
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spectroscopic evidence for ternary complex formation between arsenate and ferric iron complexes of humic substances.
    Mikutta C; Kretzschmar R
    Environ Sci Technol; 2011 Nov; 45(22):9550-7. PubMed ID: 21985502
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insight into the interaction mechanism of iron ions with soil humic acids. The effect of the pH and chemical properties of humic acids.
    Boguta P; D'Orazio V; Senesi N; Sokołowska Z; Szewczuk-Karpisz K
    J Environ Manage; 2019 Sep; 245():367-374. PubMed ID: 31158689
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cation-induced coagulation of aquatic plant-derived dissolved organic matter: Investigation by EEM-PARAFAC and FT-IR spectroscopy.
    Liu S; Zhu Y; Liu L; He Z; Giesy JP; Bai Y; Sun F; Wu F
    Environ Pollut; 2018 Mar; 234():726-734. PubMed ID: 29241158
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coagulation of humic substances and dissolved organic matter with a ferric salt: an electron energy loss spectroscopy investigation.
    Jung AV; Chanudet V; Ghanbaja J; Lartiges BS; Bersillon JL
    Water Res; 2005 Oct; 39(16):3849-62. PubMed ID: 16112165
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complexation of arsenite with humic acid in the presence of ferric iron.
    Liu G; Fernandez A; Cai Y
    Environ Sci Technol; 2011 Apr; 45(8):3210-6. PubMed ID: 21322632
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Humic-like substances from urban waste as auxiliaries for photo-Fenton treatment: a fluorescence EEM-PARAFAC study.
    Ballesteros SG; Costante M; Vicente R; Mora M; Amat AM; Arques A; Carlos L; Einschlag FS
    Photochem Photobiol Sci; 2017 Jan; 16(1):38-45. PubMed ID: 27714341
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How does organic matter constrain the nature, size and availability of Fe nanoparticles for biological reduction?
    Pédrot M; Le Boudec A; Davranche M; Dia A; Henin O
    J Colloid Interface Sci; 2011 Jul; 359(1):75-85. PubMed ID: 21482426
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of natural organic matter on the coprecipitation of arsenic with iron.
    Kim EJ; Hwang BR; Baek K
    Environ Geochem Health; 2015 Dec; 37(6):1029-39. PubMed ID: 25754698
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Competitive effect of iron(III) on metal complexation by humic substances: characterisation of ageing processes.
    Lippold H; Evans ND; Warwick P; Kupsch H
    Chemosphere; 2007 Mar; 67(5):1050-6. PubMed ID: 17140629
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The roles of natural organic matter in chemical and microbial reduction of ferric iron.
    Chen J; Gu B; Royer RA; Burgos WD
    Sci Total Environ; 2003 May; 307(1-3):167-78. PubMed ID: 12711432
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of humic substances on the oxidation of pentachlorophenol by peroxosulfate catalyzed by iron(III)-phthalocyanine-tetrasulfonic acid.
    Fukushima M; Tatsumi K
    Bioresour Technol; 2006 Sep; 97(14):1605-11. PubMed ID: 16169213
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Colloidal stability of Fe
    Wang H; Zhao X; Han X; Tang Z; Song F; Zhang S; Zhu Y; Guo W; He Z; Guo Q; Wu F; Meng X; Giesy JP
    Environ Pollut; 2018 Oct; 241():912-921. PubMed ID: 29920469
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of Fe(III) and quality of humic substances on As(V) distribution in freshwater: Use of ultrafiltration and Kohonen neural network.
    Gontijo ESJ; Watanabe CH; Monteiro ASC; da Silva GA; Roeser HMP; Rosa AH; Friese K
    Chemosphere; 2017 Dec; 188():208-217. PubMed ID: 28886555
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of environmental factors on the complexation of iron and humic acid.
    Fang K; Yuan D; Zhang L; Feng L; Chen Y; Wang Y
    J Environ Sci (China); 2015 Jan; 27():188-96. PubMed ID: 25597677
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Particle size, charge and colloidal stability of humic acids coprecipitated with Ferrihydrite.
    Angelico R; Ceglie A; He JZ; Liu YR; Palumbo G; Colombo C
    Chemosphere; 2014 Mar; 99():239-47. PubMed ID: 24315181
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of pH and stream order on iron and arsenic speciation in boreal catchments.
    Neubauer E; Köhler SJ; von der Kammer F; Laudon H; Hofmann T
    Environ Sci Technol; 2013 Jul; 47(13):7120-8. PubMed ID: 23692297
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of inorganic ions and natural organic matter on arsenates removal by ferrate(VI): Understanding a complex effect of phosphates ions.
    Kolařík J; Prucek R; Tuček J; Filip J; Sharma VK; Zbořil R
    Water Res; 2018 Sep; 141():357-365. PubMed ID: 29804022
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of Fe(III) on the bromate reduction by humic substances in aqueous solution.
    Xie L; Shang C; Zhou Q
    J Environ Sci (China); 2008; 20(3):257-61. PubMed ID: 18595389
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.