BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 24635730)

  • 21. Spectroscopic Characteristics and Speciation Distribution of Fe(III) Binding to Molecular Weight-Dependent Standard Pahokee Peat Fulvic Acid.
    Zhang Y; Liu C; Li Y; Song L; Yang J; Zuo R; Li J; Teng Y; Wang J
    Int J Environ Res Public Health; 2022 Jun; 19(13):. PubMed ID: 35805509
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Photoreduction of Terrigenous Fe-Humic Substances Leads to Bioavailable Iron in Oceans.
    Blazevic A; Orlowska E; Kandioller W; Jirsa F; Keppler BK; Tafili-Kryeziu M; Linert W; Krachler RF; Krachler R; Rompel A
    Angew Chem Int Ed Engl; 2016 May; 55(22):6417-22. PubMed ID: 27100573
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of humic substances and quinones at low concentrations on ferrihydrite reduction by Geobacter metallireducens.
    Wolf M; Kappler A; Jiang J; Meckenstock RU
    Environ Sci Technol; 2009 Aug; 43(15):5679-85. PubMed ID: 19731662
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparison of zinc complexation properties of dissolved natural organic matter from different surface waters.
    Cheng T; Allen HE
    J Environ Manage; 2006 Aug; 80(3):222-9. PubMed ID: 16338053
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of aquatic humic substances and their metal complexes by immobilized metal-chelate affinity chromatography on iron(III)-loaded ion exchangers.
    Burba P; Jakubowski B; Kuckuk R; Küllmer K; Heumann KG
    Fresenius J Anal Chem; 2000 Dec; 368(7):689-96. PubMed ID: 11227549
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rates and extent of reduction of Fe(III) compounds and O2 by humic substances.
    Bauer I; Kappler A
    Environ Sci Technol; 2009 Jul; 43(13):4902-8. PubMed ID: 19673283
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chromium(III) complexation to natural organic matter: mechanisms and modeling.
    Gustafsson JP; Persson I; Oromieh AG; van Schaik JW; Sjöstedt C; Kleja DB
    Environ Sci Technol; 2014; 48(3):1753-61. PubMed ID: 24422446
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evaluation of the binding of iron(II) to humic substances derived from a compost sample by a colorimetric method using ferrozine.
    Yamamoto M; Nishida A; Otsuka K; Komai T; Fukushima M
    Bioresour Technol; 2010 Jun; 101(12):4456-60. PubMed ID: 20163958
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of chlorination on metal binding by dissolved organic matter: a study using Log-transformed differential spectra.
    Yan M; Li D; Gao J; Cheng J
    Chemosphere; 2014 May; 103():290-8. PubMed ID: 24387913
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evidence for strong but dynamic iron-humic colloidal associations in humic-rich coastal waters.
    Batchelli S; Muller FL; Chang KC; Lee CL
    Environ Sci Technol; 2010 Nov; 44(22):8485-90. PubMed ID: 20964358
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Underestimation of phosphorus fraction change in the supernatant after phosphorus adsorption onto iron oxides and iron oxide-natural organic matter complexes.
    Yan J; Jiang T; Yao Y; Wang J; Cai Y; Green NW; Wei S
    J Environ Sci (China); 2017 May; 55():197-205. PubMed ID: 28477813
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Adsorption of antimony(V) by floodplain soils, amorphous iron(III) hydroxide and humic acid.
    Tighe M; Lockwood P; Wilson S
    J Environ Monit; 2005 Dec; 7(12):1177-85. PubMed ID: 16307069
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Changes in humic acid conformation during coagulation with ferric chloride: implications for drinking water treatment.
    Siéliéchi JM; Lartiges BS; Kayem GJ; Hupont S; Frochot C; Thieme J; Ghanbaja J; d'Espinose de la Caillerie JB; Barrès O; Kamga R; Levitz P; Michot LJ
    Water Res; 2008 Apr; 42(8-9):2111-23. PubMed ID: 18155268
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hydroquinone-Mediated Redox Cycling of Iron and Concomitant Oxidation of Hydroquinone in Oxic Waters under Acidic Conditions: Comparison with Iron-Natural Organic Matter Interactions.
    Jiang C; Garg S; Waite TD
    Environ Sci Technol; 2015 Dec; 49(24):14076-84. PubMed ID: 26579728
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Binding of ciprofloxacin by humic substances: a molecular dynamics study.
    Aristilde L; Sposito G
    Environ Toxicol Chem; 2010 Jan; 29(1):90-8. PubMed ID: 20821423
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Oxygen and superoxide-mediated redox kinetics of iron complexed by humic substances in coastal seawater.
    Fujii M; Rose AL; Waite TD; Omura T
    Environ Sci Technol; 2010 Dec; 44(24):9337-42. PubMed ID: 21077605
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Subsurface interactions of Fe(II) with humic acid or landfill leachate do not control subsequent iron(III) (hydr)oxide production at the surface.
    Jackson A; Gaffney JW; Boult S
    Environ Sci Technol; 2012 Jul; 46(14):7543-50. PubMed ID: 22712619
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Complexation and Redox Buffering of Iron(II) by Dissolved Organic Matter.
    Daugherty EE; Gilbert B; Nico PS; Borch T
    Environ Sci Technol; 2017 Oct; 51(19):11096-11104. PubMed ID: 28853878
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Insight into the effect of natural organic matter on the photooxidation of arsenite induced by colloidal ferric hydroxides in water.
    Wu Y; Huang X; Xu J; Huang W; Li J; Mailhot G; Wu F
    Water Res; 2023 Apr; 232():119683. PubMed ID: 36739662
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Complexes of the antimicrobial ciprofloxacin with soil, peat, and aquatic humic substances.
    Aristilde L; Sposito G
    Environ Toxicol Chem; 2013 Jul; 32(7):1467-78. PubMed ID: 23456646
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.