These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 2463584)

  • 1. Lithium/silver vanadium oxide batteries for implantable defibrillators.
    Takeuchi ES; Quattrini PJ; Greatbatch W
    Pacing Clin Electrophysiol; 1988 Nov; 11(11 Pt 2):2035-9. PubMed ID: 2463584
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-term testing of defibrillator batteries.
    Holmes CF; Visbisky M
    Pacing Clin Electrophysiol; 1991 Feb; 14(2 Pt 2):341-5. PubMed ID: 1706849
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The cardiac implantable electronic device power source: evolution and revolution.
    Mond HG; Freitag G
    Pacing Clin Electrophysiol; 2014 Dec; 37(12):1728-45. PubMed ID: 25387600
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hybrid Cathode Lithium Battery Discharge Simulation for Implantable Cardioverter Defibrillators Using a Coupled Electro-Thermal Dynamic Model.
    Doosthosseini M; Ghods H; Talkhoncheh MK; Silberberg JL; Weininger S
    Cardiovasc Eng Technol; 2023 Aug; 14(4):534-543. PubMed ID: 37566310
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Kinetics and Equilibrium Study of Vanadium Dissolution from Vanadium Oxides and Phosphates in Battery Electrolytes: Possible Impacts on ICD Battery Performance.
    Bock DC; Marschilok AC; Takeuchi KJ; Takeuchi ES
    J Power Sources; 2013 Jun; 231():219-225. PubMed ID: 25866437
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural and silver/vanadium ratio effects on silver vanadium phosphorous oxide solution formation kinetics: impact on battery electrochemistry.
    Bock DC; Takeuchi KJ; Marschilok AC; Takeuchi ES
    Phys Chem Chem Phys; 2015 Jan; 17(3):2034-42. PubMed ID: 25478865
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel sodium intercalated (NH4)2V6O16 platelets: High performance cathode materials for lithium-ion battery.
    Fei H; Wu X; Li H; Wei M
    J Colloid Interface Sci; 2014 Feb; 415():85-8. PubMed ID: 24267333
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Silver vanadium oxide and silver vanadium phosphorous oxide dissolution kinetics: a mechanistic study with possible impact on future ICD battery lifetimes.
    Bock DC; Takeuchi KJ; Marschilok AC; Takeuchi ES
    Dalton Trans; 2013 Oct; 42(38):13981-9. PubMed ID: 23925733
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mapping the anode surface-electrolyte interphase: investigating a life limiting process of lithium primary batteries.
    Bock DC; Tappero RV; Takeuchi KJ; Marschilok AC; Takeuchi ES
    ACS Appl Mater Interfaces; 2015 Mar; 7(9):5429-37. PubMed ID: 25690846
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Implantable power-sources: a review.
    Greatbatch W
    J Med Eng Technol; 1984; 8(2):56-63. PubMed ID: 6381735
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-Dimensional Vanadium Carbide (MXene) as a High-Capacity Cathode Material for Rechargeable Aluminum Batteries.
    VahidMohammadi A; Hadjikhani A; Shahbazmohamadi S; Beidaghi M
    ACS Nano; 2017 Nov; 11(11):11135-11144. PubMed ID: 29039915
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrospun ultralong hierarchical vanadium oxide nanowires with high performance for lithium ion batteries.
    Mai L; Xu L; Han C; Xu X; Luo Y; Zhao S; Zhao Y
    Nano Lett; 2010 Nov; 10(11):4750-5. PubMed ID: 20954742
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Significant Discrepancy Between Estimated and Actual Longevity in St. Jude Medical Implantable Cardioverter-Defibrillators.
    Doppalapudi H; Barrios J; Cuellar J; Gannon M; Yamada T; Kumar V; Maddox WR; Plumb VJ; Brown TM; McElderry HT
    J Cardiovasc Electrophysiol; 2017 May; 28(5):552-558. PubMed ID: 28181727
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ag(6)Mo(2)O(7)F(3)Cl: a new silver cathode material for enhanced ICD primary lithium batteries.
    Sauvage F; Bodenez V; Tarascon JM; Poeppelmeier KR
    Inorg Chem; 2010 Jul; 49(14):6461-7. PubMed ID: 20545306
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lithium Storage in Microstructures of Amorphous Mixed-Valence Vanadium Oxide as Anode Materials.
    Zhao D; Zheng L; Xiao Y; Wang X; Cao M
    ChemSusChem; 2015 Jul; 8(13):2212-22. PubMed ID: 26018759
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flower-like Vanadium Suflide/Reduced Graphene Oxide Composite: An Energy Storage Material for Aluminum-Ion Batteries.
    Zhang X; Wang S; Tu J; Zhang G; Li S; Tian D; Jiao S
    ChemSusChem; 2018 Feb; 11(4):709-715. PubMed ID: 29285890
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amorphous and Crystalline Vanadium Oxides as High-Energy and High-Power Cathodes for Three-Dimensional Thin-Film Lithium Ion Batteries.
    Mattelaer F; Geryl K; Rampelberg G; Dendooven J; Detavernier C
    ACS Appl Mater Interfaces; 2017 Apr; 9(15):13121-13131. PubMed ID: 28362478
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation of Layered-Spinel Microsphere/Reduced Graphene Oxide Cathode Materials for Ultrafast Charge-Discharge Lithium-Ion Batteries.
    Luo D; Fang S; Yang L; Hirano SI
    ChemSusChem; 2017 Dec; 10(24):4845-4850. PubMed ID: 28718226
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brannerite-Type Vanadium-Molybdenum Oxide LiVMoO₆ as a Promising Anode Material for Lithium-Ion Batteries with High Capacity and Rate Capability.
    Chen N; Wang C; Hu F; Bie X; Wei Y; Chen G; Du F
    ACS Appl Mater Interfaces; 2015 Jul; 7(29):16117-23. PubMed ID: 26154565
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fire Tests on E-vehicle Battery Cells and Packs.
    Sturk D; Hoffmann L; Ahlberg Tidblad A
    Traffic Inj Prev; 2015; 16 Suppl 1():S159-64. PubMed ID: 25714114
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.