These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 24636273)

  • 21. Crystal structure of an enzyme displaying both inositol-polyphosphate-1-phosphatase and 3'-phosphoadenosine-5'-phosphate phosphatase activities: a novel target of lithium therapy.
    Patel S; Yenush L; Rodríguez PL; Serrano R; Blundell TL
    J Mol Biol; 2002 Jan; 315(4):677-85. PubMed ID: 11812139
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Glycogen synthase kinase 3: a drug target for CNS therapies.
    Bhat RV; Budd Haeberlein SL; Avila J
    J Neurochem; 2004 Jun; 89(6):1313-7. PubMed ID: 15189333
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Lithium neuroprotection: molecular mechanisms and clinical implications.
    Rowe MK; Chuang DM
    Expert Rev Mol Med; 2004 Oct; 6(21):1-18. PubMed ID: 15488156
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lithium, a potential protective drug in Alzheimer's disease.
    Engel T; Goñi-Oliver P; Gómez de Barreda E; Lucas JJ; Hernández F; Avila J
    Neurodegener Dis; 2008; 5(3-4):247-9. PubMed ID: 18322403
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Calbindin D28k and S100B have a similar interaction site with the lithium-inhibitable enzyme inositol monophosphatase-1: a new drug target site.
    Agam G; Almog O
    J Med Chem; 2015 Feb; 58(4):2042-4. PubMed ID: 25665147
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhancement by lithium of cAMP-induced CRE/CREB-directed gene transcription conferred by TORC on the CREB basic leucine zipper domain.
    Böer U; Eglins J; Krause D; Schnell S; Schöfl C; Knepel W
    Biochem J; 2007 Nov; 408(1):69-77. PubMed ID: 17696880
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The NMDA receptor/nitric oxide pathway: a target for the therapeutic and toxic effects of lithium.
    Ghasemi M; Dehpour AR
    Trends Pharmacol Sci; 2011 Jul; 32(7):420-34. PubMed ID: 21492946
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Noncompetitive inhibition of inositol monophosphatase by K-76 monocarboxylic acid.
    Pachter JA
    Mol Pharmacol; 1991 Jul; 40(1):107-11. PubMed ID: 1649963
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chronic lithium treatment attenuates intracellular calcium mobilization.
    Wasserman MJ; Corson TW; Sibony D; Cooke RG; Parikh SV; Pennefather PS; Li PP; Warsh JJ
    Neuropsychopharmacology; 2004 Apr; 29(4):759-69. PubMed ID: 14970832
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Review of lithium effects on brain and blood.
    Young W
    Cell Transplant; 2009; 18(9):951-75. PubMed ID: 19523343
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In vitro galantamine-memantine co-application: mechanism of beneficial action.
    Zhao X; Marszalec W; Toth PT; Huang J; Yeh JZ; Narahashi T
    Neuropharmacology; 2006 Dec; 51(7-8):1181-91. PubMed ID: 17011596
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dysregulation of neural calcium signaling in Alzheimer disease, bipolar disorder and schizophrenia.
    Berridge MJ
    Prion; 2013; 7(1):2-13. PubMed ID: 22895098
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Interleukin-6 reduces NMDAR-mediated cytosolic Ca²⁺ overload and neuronal death via JAK/CaN signaling.
    Ma SH; Zhuang QX; Shen WX; Peng YP; Qiu YH
    Cell Calcium; 2015 Sep; 58(3):286-95. PubMed ID: 26104917
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Lithium prevents early cytosolic calcium increase and secondary injurious calcium overload in glycolytically inhibited endothelial cells.
    Bosche B; Schäfer M; Graf R; Härtel FV; Schäfer U; Noll T
    Biochem Biophys Res Commun; 2013 May; 434(2):268-72. PubMed ID: 23541580
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Lithium mechanisms in bipolar illness and altered intracellular calcium functions.
    Meltzer HL
    Biol Psychiatry; 1986 May; 21(5-6):492-510. PubMed ID: 2421787
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular actions and therapeutic potential of lithium in preclinical and clinical studies of CNS disorders.
    Chiu CT; Chuang DM
    Pharmacol Ther; 2010 Nov; 128(2):281-304. PubMed ID: 20705090
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Glutamate-mediated calcium signaling: a potential target for lithium action.
    Sourial-Bassillious N; Rydelius PA; Aperia A; Aizman O
    Neuroscience; 2009 Jul; 161(4):1126-34. PubMed ID: 19362133
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Calcium influx through N-methyl-D-aspartate receptors triggers GABA release at interneuron-Purkinje cell synapse in rat cerebellum.
    Glitsch MD
    Neuroscience; 2008 Jan; 151(2):403-9. PubMed ID: 18055124
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Neuronal calcium signaling and Alzheimer's disease.
    Woods NK; Padmanabhan J
    Adv Exp Med Biol; 2012; 740():1193-217. PubMed ID: 22453989
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Determination of the lithium binding site in inositol monophosphatase, the putative target for lithium therapy, by magic-angle-spinning solid-state NMR.
    Haimovich A; Eliav U; Goldbourt A
    J Am Chem Soc; 2012 Mar; 134(12):5647-51. PubMed ID: 22384802
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.