These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 24636273)

  • 41. Amyloid beta oligomers induce Ca2+ dysregulation and neuronal death through activation of ionotropic glutamate receptors.
    Alberdi E; Sánchez-Gómez MV; Cavaliere F; Pérez-Samartín A; Zugaza JL; Trullas R; Domercq M; Matute C
    Cell Calcium; 2010 Mar; 47(3):264-72. PubMed ID: 20061018
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effects of L-690,488, a prodrug of the bisphosphonate inositol monophosphatase inhibitor L-690,330, on phosphatidylinositol cycle markers.
    Atack JR; Prior AM; Fletcher SR; Quirk K; McKernan R; Ragan CI
    J Pharmacol Exp Ther; 1994 Jul; 270(1):70-6. PubMed ID: 8035344
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Modulation of mitochondrial calcium as a pharmacological target for Alzheimer's disease.
    Hung CH; Ho YS; Chang RC
    Ageing Res Rev; 2010 Oct; 9(4):447-56. PubMed ID: 20553970
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Inhibition of Plasma Membrane Na/Ca-Exchanger by KB-R7943 or Lithium Reveals Its Role in Ca-Dependent N-methyl-d-aspartate Receptor Inactivation.
    Sibarov DA; Abushik PA; Poguzhelskaya EE; Bolshakov KV; Antonov SM
    J Pharmacol Exp Ther; 2015 Dec; 355(3):484-95. PubMed ID: 26391160
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Liuwei Dihuang decoction facilitates the induction of long-term potentiation (LTP) in senescence accelerated mouse/prone 8 (SAMP8) hippocampal slices by inhibiting voltage-dependent calcium channels (VDCCs) and promoting N-methyl-d-aspartate receptor (NMDA) receptors.
    Huang Y; Zhang H; Yang S; Qiao H; Zhou W; Zhang Y
    J Ethnopharmacol; 2012 Mar; 140(2):384-90. PubMed ID: 22310556
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Neuroprotective action of lithium in disorders of the central nervous system.
    Chiu CT; Chuang DM
    Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2011 Jun; 36(6):461-76. PubMed ID: 21743136
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Protection by cholesterol-extracting cyclodextrins: a role for N-methyl-D-aspartate receptor redistribution.
    Abulrob A; Tauskela JS; Mealing G; Brunette E; Faid K; Stanimirovic D
    J Neurochem; 2005 Mar; 92(6):1477-86. PubMed ID: 15748165
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Glycogen synthase kinase-3: a putative molecular target for lithium mimetic drugs.
    Gould TD; Manji HK
    Neuropsychopharmacology; 2005 Jul; 30(7):1223-37. PubMed ID: 15827567
    [TBL] [Abstract][Full Text] [Related]  

  • 49. N-methyl-D-aspartate receptor and apoptosis in Alzheimer's disease and multiinfarct dementia.
    Fang M; Li J; Tiu SC; Zhang L; Wang M; Yew DT
    J Neurosci Res; 2005 Jul; 81(2):269-74. PubMed ID: 15931666
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Neurotrophic effects of lithium stimulate the reduction of ischemic and neurodegenerative brain damage].
    Pronin AV; Gogoleva IV; Torshin IY; Gromovа OA
    Zh Nevrol Psikhiatr Im S S Korsakova; 2016; 116(2):99-108. PubMed ID: 27166488
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Vitamin D and Depression: Cellular and Regulatory Mechanisms.
    Berridge MJ
    Pharmacol Rev; 2017 Apr; 69(2):80-92. PubMed ID: 28202503
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Restoring calcium homeostasis to treat Alzheimer's disease: a future perspective.
    Popugaeva E; Vlasova OL; Bezprozvanny I
    Neurodegener Dis Manag; 2015 Oct; 5(5):395-8. PubMed ID: 26477700
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Dysregulation of Intracellular Calcium Signaling in Alzheimer's Disease.
    Popugaeva E; Pchitskaya E; Bezprozvanny I
    Antioxid Redox Signal; 2018 Oct; 29(12):1176-1188. PubMed ID: 29890840
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Inositol monophosphatase in immortalized lymphoblastoid cell lines indicates susceptibility to bipolar disorder and response to lithium therapy.
    Shamir A; Ebstein RP; Nemanov L; Zohar A; Belmaker RH; Agam G
    Mol Psychiatry; 1998 Nov; 3(6):481-2. PubMed ID: 9857972
    [No Abstract]   [Full Text] [Related]  

  • 55. Potential mechanisms underlying lithium treatment for Alzheimer's disease and COVID-19.
    Wei HF; Anchipolovsky S; Vera R; Liang G; Chuang DM
    Eur Rev Med Pharmacol Sci; 2022 Mar; 26(6):2201-2214. PubMed ID: 35363371
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Calcium Hypothesis of Alzheimer's disease and brain aging: A framework for integrating new evidence into a comprehensive theory of pathogenesis.
    Alzheimer's Association Calcium Hypothesis Workgroup
    Alzheimers Dement; 2017 Feb; 13(2):178-182.e17. PubMed ID: 28061328
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Lithium and myo-inositol homeostasis.
    Gani D; Downes CP; Batty I; Bramham J
    Biochim Biophys Acta; 1993 Jun; 1177(3):253-69. PubMed ID: 8391849
    [No Abstract]   [Full Text] [Related]  

  • 58. Experimental data on lithium salts: From neuroprotection to multi-organ complications.
    Kakhki S; Ahmadi-Soleimani SM
    Life Sci; 2022 Oct; 306():120811. PubMed ID: 35850248
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Vitamin D, reactive oxygen species and calcium signalling in ageing and disease.
    Berridge MJ
    Philos Trans R Soc Lond B Biol Sci; 2016 Aug; 371(1700):. PubMed ID: 27377727
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Neuroprotective effects of lithium: what are the implications in humans with neurodegenerative disorders?
    Morlet É; Hozer F; Costemale-Lacoste JF
    Geriatr Psychol Neuropsychiatr Vieil; 2018 Mar; 16(1):78-86. PubMed ID: 29400298
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.