BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 24636363)

  • 1. Quantification of the ultrasound induced sedimentation of Microcystis aeruginosa.
    Rodriguez-Molares A; Dickson S; Hobson P; Howard C; Zander A; Burch M
    Ultrason Sonochem; 2014 Jul; 21(4):1299-304. PubMed ID: 24636363
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of 1.7 MHz ultrasound on a gas-vacuolate cyanobacterium and a gas-vacuole negative cyanobacterium.
    Tang JW; Wu QY; Hao HW; Chen Y; Wu M
    Colloids Surf B Biointerfaces; 2004 Jul; 36(2):115-21. PubMed ID: 15261016
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced coagulation by high-frequency ultrasound in Microcystis aeruginosa-laden water: Strategies and mechanisms.
    Li Y; Shi X; Zhang Z; Peng Y
    Ultrason Sonochem; 2019 Jul; 55():232-242. PubMed ID: 30712852
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of ultrasound frequency and power, on the algal species Microcystis aeruginosa, Aphanizomenon flos-aquae, Scenedesmus subspicatus and Melosira sp.
    Purcell D; Parsons SA; Jefferson B
    Environ Technol; 2013; 34(17-20):2477-90. PubMed ID: 24527608
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrasonic frequency effects on the removal of Microcystis aeruginosa.
    Zhang G; Zhang P; Wang B; Liu H
    Ultrason Sonochem; 2006 Jul; 13(5):446-50. PubMed ID: 16360333
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrasound-enhanced coagulation for Microcystis aeruginosa removal.
    Zhang G; Zhang P; Fan M
    Ultrason Sonochem; 2009 Mar; 16(3):334-8. PubMed ID: 19083255
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The diameter and critical collapse pressure of gas vesicles in Microcystis are correlated with GvpCs of different length.
    Dunton PG; Walsby AE
    FEMS Microbiol Lett; 2005 Jun; 247(1):37-43. PubMed ID: 15927745
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure of the gas vesicle protein GvpF from the cyanobacterium Microcystis aeruginosa.
    Xu BY; Dai YN; Zhou K; Liu YT; Sun Q; Ren YM; Chen Y; Zhou CZ
    Acta Crystallogr D Biol Crystallogr; 2014 Nov; 70(Pt 11):3013-22. PubMed ID: 25372690
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application and reactivation of magnetic nanoparticles in Microcystis aeruginosa harvesting.
    Lin Z; Xu Y; Zhen Z; Fu Y; Liu Y; Li W; Luo C; Ding A; Zhang D
    Bioresour Technol; 2015 Aug; 190():82-8. PubMed ID: 25935387
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of the mechanisms of the effect of ultrasound on Microcystis aeruginosa at different ultrasonic frequencies.
    Wu X; Joyce EM; Mason TJ
    Water Res; 2012 Jun; 46(9):2851-8. PubMed ID: 22440593
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of sonication at 20 kHz on Microcystis aeruginosa, Anabaena circinalis and Chlorella sp.
    Rajasekhar P; Fan L; Nguyen T; Roddick FA
    Water Res; 2012 Apr; 46(5):1473-81. PubMed ID: 22119237
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The gas vesicle gene cluster from Microcystis aeruginosa and DNA rearrangements that lead to loss of cell buoyancy.
    Mlouka A; Comte K; Castets AM; Bouchier C; Tandeau de Marsac N
    J Bacteriol; 2004 Apr; 186(8):2355-65. PubMed ID: 15060038
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrasonic damages on cyanobacterial photosynthesis.
    Zhang G; Zhang P; Liu H; Wang B
    Ultrason Sonochem; 2006 Sep; 13(6):501-5. PubMed ID: 16413996
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of ultrasonic frequency and power on algae suspensions.
    Joyce EM; Wu X; Mason TJ
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010; 45(7):863-6. PubMed ID: 20401779
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reciprocal allelopathic responses between toxic cyanobacteria (Microcystis aeruginosa) and duckweed (Lemna japonica).
    Jang MH; Ha K; Takamura N
    Toxicon; 2007 Apr; 49(5):727-33. PubMed ID: 17207510
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Correlation analysis among characters of gas vesicle in Microcystis strains].
    Zhang YS; Kong FX; Yu Y; Zhang M; Shi XL; Shi LM
    Huan Jing Ke Xue; 2011 Aug; 32(8):2273-8. PubMed ID: 22619949
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell surface characterisation of Microcystis aeruginosa and Chlorella vulgaris.
    Hadjoudja S; Deluchat V; Baudu M
    J Colloid Interface Sci; 2010 Feb; 342(2):293-9. PubMed ID: 20004408
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [A new method for isolating gas vesicles from
    Xu R; Long H; Wang Y; Huang K
    Sheng Wu Gong Cheng Xue Bao; 2022 Apr; 38(4):1589-1601. PubMed ID: 35470629
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomonitoring genotoxicity and cytotoxicity of Microcystis aeruginosa (Chroococcales, cyanobacteria) using the Allium cepa test.
    Laughinghouse HD; Prá D; Silva-Stenico ME; Rieger A; Frescura VD; Fiore MF; Tedesco SB
    Sci Total Environ; 2012 Aug; 432():180-8. PubMed ID: 22728963
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The isolation and characterization of lipopolysaccharides from Microcystis aeruginosa, a prominent toxic water bloom forming cyanobacteria.
    Bláhová L; Adamovský O; Kubala L; Švihálková Šindlerová L; Zounková R; Bláha L
    Toxicon; 2013 Dec; 76():187-96. PubMed ID: 24140921
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.