BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 24636532)

  • 1. A multiscale study on the structural and mechanical properties of the luffa sponge from Luffa cylindrica plant.
    Chen Q; Shi Q; Gorb SN; Li Z
    J Biomech; 2014 Apr; 47(6):1332-9. PubMed ID: 24636532
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical properties of luffa sponge.
    Shen J; Min Xie Y; Huang X; Zhou S; Ruan D
    J Mech Behav Biomed Mater; 2012 Nov; 15():141-52. PubMed ID: 23032434
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of potential cellulose fiber from Luffa vine: A study on physicochemical and structural properties.
    Cheng D; Weng B; Chen Y; Zhai S; Wang C; Xu R; Guo J; Lv Y; Shi L; Guo Y
    Int J Biol Macromol; 2020 Dec; 164():2247-2257. PubMed ID: 32798545
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Light but tough bio-inherited materials: Luffa sponge based nickel-plated composites.
    Yin S; Wang H; Li J; Ritchie RO; Xu J
    J Mech Behav Biomed Mater; 2019 Jun; 94():10-18. PubMed ID: 30851656
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wood-Derived Materials for Green Electronics, Biological Devices, and Energy Applications.
    Zhu H; Luo W; Ciesielski PN; Fang Z; Zhu JY; Henriksson G; Himmel ME; Hu L
    Chem Rev; 2016 Aug; 116(16):9305-74. PubMed ID: 27459699
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular deformation mechanisms of the wood cell wall material.
    Jin K; Qin Z; Buehler MJ
    J Mech Behav Biomed Mater; 2015 Feb; 42():198-206. PubMed ID: 25498207
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular Origin of Strength and Stiffness in Bamboo Fibrils.
    Youssefian S; Rahbar N
    Sci Rep; 2015 Jun; 5():11116. PubMed ID: 26054045
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In-Depth Analysis of the Structure and Properties of Two Varieties of Natural Luffa Sponge Fibers.
    Chen Y; Su N; Zhang K; Zhu S; Zhao L; Fang F; Ren L; Guo Y
    Materials (Basel); 2017 Apr; 10(5):. PubMed ID: 28772838
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of chemically modified Luffa on the preparation of nanofiber and its biological evaluation for biomedical applications.
    Mary Stella S; Vijayalakshmi U
    J Biomed Mater Res A; 2019 Mar; 107(3):610-620. PubMed ID: 30408314
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural and mechanical roles of wood polymer assemblies in softwood revealed by gradual removal of polysaccharides or lignin.
    Kurei T; Sakai S; Nakaba S; Funada R; Horikawa Y
    Int J Biol Macromol; 2024 Feb; 259(Pt 2):129270. PubMed ID: 38199531
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of chemical treatment and drying method on the properties of cellulose fibers of luffa sponge.
    Zhang K; Weng B; Cheng D; Guo Y; Chen T; Wang L; Wang C; Xu R; Chen Y
    Int J Biol Macromol; 2021 Jun; 180():112-120. PubMed ID: 33722619
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lightweight composites from long wheat straw and polypropylene web.
    Zou Y; Huda S; Yang Y
    Bioresour Technol; 2010 Mar; 101(6):2026-33. PubMed ID: 19939672
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atomic force microscopy reveals how relative humidity impacts the Young's modulus of lignocellulosic polymers and their adhesion with cellulose nanocrystals at the nanoscale.
    Marcuello C; Foulon L; Chabbert B; Aguié-Béghin V; Molinari M
    Int J Biol Macromol; 2020 Mar; 147():1064-1075. PubMed ID: 31743709
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-destructive assessment of mechanical properties of microcrystalline cellulose compacts.
    Palomäki E; Ehlers H; Antikainen O; Sandler N; Yliruusi J
    Int J Pharm; 2015 Nov; 495(2):633-41. PubMed ID: 26410756
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of a new natural fiber from Arundo donax L. as potential reinforcement of polymer composites.
    Fiore V; Scalici T; Valenza A
    Carbohydr Polym; 2014 Jun; 106():77-83. PubMed ID: 24721053
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Water-responsive rapid recovery of natural cellular material.
    Shen J; Xie YM; Zhou S; Huang X; Ruan D
    J Mech Behav Biomed Mater; 2014 Jun; 34():283-93. PubMed ID: 24657743
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comprehensive characterization of natural cellulosic fiber from Coccinia grandis stem.
    Jebadurai SG; Raj RE; Sreenivasan VS; Binoj JS
    Carbohydr Polym; 2019 Mar; 207():675-683. PubMed ID: 30600052
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental investigation of various vegetable fibers as sorbent materials for oil spills.
    Annunciado TR; Sydenstricker TH; Amico SC
    Mar Pollut Bull; 2005 Nov; 50(11):1340-6. PubMed ID: 15946707
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lightweight and strong cellulose materials made from aqueous foams stabilized by nanofibrillated cellulose.
    Cervin NT; Andersson L; Ng JB; Olin P; Bergström L; Wågberg L
    Biomacromolecules; 2013 Feb; 14(2):503-11. PubMed ID: 23252421
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of biomedical porous titanium filled with medical polymer by in-situ polymerization of monomer solution infiltrated into pores.
    Nakai M; Niinomi M; Akahori T; Tsutsumi H; Itsuno S; Haraguchi N; Itoh Y; Ogasawara T; Onishi T; Shindoh T
    J Mech Behav Biomed Mater; 2010 Jan; 3(1):41-50. PubMed ID: 19878901
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.