BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 24636532)

  • 21. A new composite made from Luffa Cylindrica and ethylene vinyl acetate (EVA): Mechanical and structural characterization for its use as Mouthguard (MG).
    Carmona AR; Colorado Lopera HA
    J Mech Behav Biomed Mater; 2022 Feb; 126():105064. PubMed ID: 34968944
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structure and mechanical properties of wet-spun fibers made from natural cellulose nanofibers.
    Iwamoto S; Isogai A; Iwata T
    Biomacromolecules; 2011 Mar; 12(3):831-6. PubMed ID: 21302950
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The hierarchical structure and mechanics of plant materials.
    Gibson LJ
    J R Soc Interface; 2012 Nov; 9(76):2749-66. PubMed ID: 22874093
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Thermal and mechanical properties of bio-nanocomposites reinforced by Luffa cylindrica cellulose nanocrystals.
    Siqueira G; Bras J; Follain N; Belbekhouche S; Marais S; Dufresne A
    Carbohydr Polym; 2013 Jan; 91(2):711-7. PubMed ID: 23121968
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Influence of static compression on mechanical parameters of acoustic foams.
    Geslain A; Dazel O; Groby JP; Sahraoui S; Lauriks W
    J Acoust Soc Am; 2011 Aug; 130(2):818-25. PubMed ID: 21877797
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Properties of Luffa Cylindrica Mats Reinforced Castor Oil-Based Polyurethane Composite as an Alternative for Oriented Strand Board.
    Neves ACC; Lopes FPD; Simonassi NT; Vieira CMF; Monteiro SN
    Polymers (Basel); 2022 Dec; 14(24):. PubMed ID: 36559899
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of specimen load-bearing and free surface layers on the compressive mechanical properties of cellular materials.
    Zhu M; Keller TS; Spengler DM
    J Biomech; 1994 Jan; 27(1):57-66. PubMed ID: 8106536
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Luffa-sponge-like glass-TiO2 composite fibers as efficient photocatalysts for environmental remediation.
    Ma Z; Chen W; Hu Z; Pan X; Peng M; Dong G; Zhou S; Zhang Q; Yang Z; Qiu J
    ACS Appl Mater Interfaces; 2013 Aug; 5(15):7527-36. PubMed ID: 23862682
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Interconnected porosity analysis by 3D X-ray microtomography and mechanical behavior of biomimetic organic-inorganic composite materials.
    Alonso-Sierra S; Velázquez-Castillo R; Millán-Malo B; Nava R; Bucio L; Manzano-Ramírez A; Cid-Luna H; Rivera-Muñoz EM
    Mater Sci Eng C Mater Biol Appl; 2017 Nov; 80():45-53. PubMed ID: 28866187
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Strong, Water-Durable, and Wet-Resilient Cellulose Nanofibril-Stabilized Foams from Oven Drying.
    Cervin NT; Johansson E; Larsson PA; Wågberg L
    ACS Appl Mater Interfaces; 2016 May; 8(18):11682-9. PubMed ID: 27070532
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biodegradable poly (lactic acid)/Cellulose nanocrystals (CNCs) composite microcellular foam: Effect of nanofillers on foam cellular morphology, thermal and wettability behavior.
    Borkotoky SS; Dhar P; Katiyar V
    Int J Biol Macromol; 2018 Jan; 106():433-446. PubMed ID: 28797817
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Porous morphology and graded materials endow hedgehog spines with impact resistance and structural stability.
    Li Y; Zhang B; Niu S; Zhang Z; Song W; Wang Y; Zhang S; Li B; Mu Z; Han Z; Ren L
    Acta Biomater; 2022 Jul; 147():91-101. PubMed ID: 35598876
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhanced mechanical and thermal properties of regenerated cellulose/graphene composite fibers.
    Tian M; Qu L; Zhang X; Zhang K; Zhu S; Guo X; Han G; Tang X; Sun Y
    Carbohydr Polym; 2014 Oct; 111():456-62. PubMed ID: 25037375
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of magnesium carbonate concentration and lignin presence on properties of natural cellulosic Cissus quadrangularis fiber composites.
    Siva R; Valarmathi TN; Palanikumar K
    Int J Biol Macromol; 2020 Dec; 164():3611-3620. PubMed ID: 32877714
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microstructure and tensile properties of various varieties of rice husk.
    Chen Z; Xu Y; Shivkumar S
    J Sci Food Agric; 2018 Feb; 98(3):1061-1070. PubMed ID: 28722221
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Strength, elasticity and the limits of energy dissipation in two related sea urchin spines with biomimetic potential.
    Lauer C; Sillmann K; Haußmann S; Nickel KG
    Bioinspir Biomim; 2018 Dec; 14(1):016018. PubMed ID: 30523969
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Loofa (Luffa cylindrica) sponge: review of development of the biomatrix as a tool for biotechnological applications.
    Saeed A; Iqbal M
    Biotechnol Prog; 2013; 29(3):573-600. PubMed ID: 23378142
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Finite element analysis of mechanical behavior, permeability and fluid induced wall shear stress of high porosity scaffolds with gyroid and lattice-based architectures.
    Ali D; Sen S
    J Mech Behav Biomed Mater; 2017 Nov; 75():262-270. PubMed ID: 28759838
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Morphosynthesis: high fidelity inorganic replica of the fibrous network of loofa sponge (Luffa cylindrica).
    Mazali IO; Alves OL
    An Acad Bras Cienc; 2005 Mar; 77(1):25-31. PubMed ID: 15692676
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Contributions of hemicellulose, cellulose and lignin to the mass and the porous properties of chars and steam activated carbons from various lignocellulosic precursors.
    Cagnon B; Py X; Guillot A; Stoeckli F; Chambat G
    Bioresour Technol; 2009 Jan; 100(1):292-8. PubMed ID: 18650083
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.