BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 24636885)

  • 1. Use of silicate minerals for long-term pH control during reductive dechlorination of high tetrachloroethene concentrations in continuous flow-through columns.
    Lacroix E; Brovelli A; Maillard J; Rohrbach-Brandt E; Barry DA; Holliger C
    Sci Total Environ; 2014 Jun; 482-483():23-35. PubMed ID: 24636885
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of silicate minerals for pH control during reductive dechlorination of chloroethenes in batch cultures of different microbial consortia.
    Lacroix E; Brovelli A; Barry DA; Holliger C
    Appl Environ Microbiol; 2014 Jul; 80(13):3858-67. PubMed ID: 24747895
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control of groundwater pH during bioremediation: improvement and validation of a geochemical model to assess the buffering potential of ground silicate minerals.
    Lacroix E; Brovelli A; Holliger C; Barry DA
    J Contam Hydrol; 2014 May; 160():21-9. PubMed ID: 24589423
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microbially enhanced dissolution and reductive dechlorination of PCE by a mixed culture: model validation and sensitivity analysis.
    Chen M; Abriola LM; Amos BK; Suchomel EJ; Pennell KD; Löffler FE; Christ JA
    J Contam Hydrol; 2013 Aug; 151():117-30. PubMed ID: 23774611
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced reductive dechlorination of tetrachloroethene dense nonaqueous phase liquid with EVO and Mg(OH)2.
    Hiortdahl KM; Borden RC
    Environ Sci Technol; 2014; 48(1):624-31. PubMed ID: 24328264
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Continuous-flow column study of reductive dehalogenation of PCE upon bioaugmentation with the Evanite enrichment culture.
    Azizian MF; Behrens S; Sabalowsky A; Dolan ME; Spormann AM; Semprini L
    J Contam Hydrol; 2008 Aug; 100(1-2):11-21. PubMed ID: 18550206
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial and temporal distributions of Geobacter lovleyi and Dehalococcoides spp. during bioenhanced PCE-NAPL dissolution.
    Amos BK; Suchomel EJ; Pennell KD; Löffler FE
    Environ Sci Technol; 2009 Mar; 43(6):1977-85. PubMed ID: 19368201
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reductive dechlorination of tetrachloroethene by a stepwise catalysis of different organohalide respiring bacteria and reductive dehalogenases.
    Maillard J; Charnay MP; Regeard C; Rohrbach-Brandt E; Rouzeau-Szynalski K; Rossi P; Holliger C
    Biodegradation; 2011 Sep; 22(5):949-60. PubMed ID: 21243405
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Organohalide Respiration with Chlorinated Ethenes under Low pH Conditions.
    Yang Y; Cápiro NL; Marcet TF; Yan J; Pennell KD; Löffler FE
    Environ Sci Technol; 2017 Aug; 51(15):8579-8588. PubMed ID: 28665587
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effectiveness of stimulating PCE reductive dechlorination: a step-wise approach.
    Ni Z; Smit M; Grotenhuis T; van Gaans P; Rijnaarts H
    J Contam Hydrol; 2014 Aug; 164():209-18. PubMed ID: 24995946
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coupling permanganate oxidation with microbial dechlorination of tetrachloroethene.
    Sahl JW; Munakata-Marr J; Crimi ML; Siegrist RL
    Water Environ Res; 2007 Jan; 79(1):5-12. PubMed ID: 17290967
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combined chemical and microbiological degradation of tetrachloroethene during the application of Carbo-Iron at a contaminated field site.
    Vogel M; Nijenhuis I; Lloyd J; Boothman C; Pöritz M; Mackenzie K
    Sci Total Environ; 2018 Jul; 628-629():1027-1036. PubMed ID: 30045527
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inoculation of a DNAPL source zone to initiate reductive dechlorination of PCE.
    Adamson DT; McDade JM; Hughes JB
    Environ Sci Technol; 2003 Jun; 37(11):2525-33. PubMed ID: 12831039
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reductive dechlorination of carbon tetrachloride and tetrachloroethylene by zerovalent silicon-iron reductants.
    Doong RA; Chen KT; Tsai HC
    Environ Sci Technol; 2003 Jun; 37(11):2575-81. PubMed ID: 12831046
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Anaerobic biodegradation of tetrachloroethylene with methanol as co-metabolism substrate].
    Li HD; Yang Q; Shang HT
    Huan Jing Ke Xue; 2004 May; 25(3):84-8. PubMed ID: 15327260
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effectiveness of nanoscale zero-valent iron for treatment of a PCE-DNAPL source zone.
    Taghavy A; Costanza J; Pennell KD; Abriola LM
    J Contam Hydrol; 2010 Nov; 118(3-4):128-42. PubMed ID: 20888664
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reductive dechlorination of tetrachloroethene in a sand reactor using a potentiostat.
    Shimomura T; Sanford RA
    J Environ Qual; 2005; 34(4):1435-8. PubMed ID: 15998866
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of metal ions and humic acid on the dechlorination of tetrachloroethylene by zerovalent iron.
    Doong RA; Lai YL
    Chemosphere; 2006 Jun; 64(3):371-8. PubMed ID: 16466778
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection and quantitative estimation of Dehalococcoides spp. in a dechlorinating bioreactor by a combination of fluorescent in situ hybridisation (FISH) and kinetic analysis.
    Aulenta F; Rossetti S; Majone M; Tandoi V
    Appl Microbiol Biotechnol; 2004 Apr; 64(2):206-12. PubMed ID: 14685786
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dehalorespiration model that incorporates the self-inhibition and biomass inactivation effects of high tetrachloroethene concentrations.
    Huang D; Becker JG
    Environ Sci Technol; 2011 Feb; 45(3):1093-9. PubMed ID: 21182287
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.