BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 24636885)

  • 21. PCE dissolution and simultaneous dechlorination by nanoscale zero-valent iron particles in a DNAPL source zone.
    Fagerlund F; Illangasekare TH; Phenrat T; Kim HJ; Lowry GV
    J Contam Hydrol; 2012 Apr; 131(1-4):9-28. PubMed ID: 22326687
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Impact of sorption processes on PCE concentrations in organohalide-respiring aquifer sediment samples.
    Leitner S; Reichenauer TG; Watzinger A
    Sci Total Environ; 2018 Feb; 615():1061-1069. PubMed ID: 29751409
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Complete reductive dechlorination of tetrachloroethene to ethene by anaerobic microbial enrichment culture developed from sediment.
    Kim BH; Baek KH; Cho DH; Sung Y; Koh SC; Ahn CY; Oh HM; Kim HS
    Biotechnol Lett; 2010 Dec; 32(12):1829-35. PubMed ID: 20714784
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Impacts of low-temperature thermal treatment on microbial detoxification of tetrachloroethene under continuous flow conditions.
    Marcet TF; Cápiro NL; Yang Y; Löffler FE; Pennell KD
    Water Res; 2018 Nov; 145():21-29. PubMed ID: 30114555
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microbial activity and distribution during enhanced contaminant dissolution from a NAPL source zone.
    Amos BK; Suchomel EJ; Pennell KD; Löffler FE
    Water Res; 2008 Jun; 42(12):2963-74. PubMed ID: 18462771
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Waste activated sludge stimulates in situ microbial reductive dehalogenation of organohalide-contaminated soil.
    Lu Q; Liu J; He H; Liang Z; Qiu R; Wang S
    J Hazard Mater; 2021 Jun; 411():125189. PubMed ID: 33858119
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Simultaneous anaerobic transformation of tetrachloroethene and carbon tetrachloride in a continuous flow column.
    Azizian MF; Semprini L
    J Contam Hydrol; 2016 Jul; 190():58-68. PubMed ID: 27183341
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Abiotic transformation of perchloroethylene in homogeneous dithionite solution and in suspensions of dithionite-treated clay minerals.
    Nzengung VA; Castillo RM; Gates WP; Mills GL
    Environ Sci Technol; 2001 Jun; 35(11):2244-51. PubMed ID: 11414025
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhanced PCE dechlorination by biobarrier systems under different redox conditions.
    Kao CM; Chen YL; Chen SC; Yeh TY; Wu WS
    Water Res; 2003 Dec; 37(20):4885-94. PubMed ID: 14604634
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Benzoate-driven dehalogenation of chlorinated ethenes in microbial cultures from a contaminated aquifer.
    Bunge M; Kleikemper J; Miniaci C; Duc L; Muusse MG; Hause G; Zeyer J
    Appl Microbiol Biotechnol; 2007 Oct; 76(6):1447-56. PubMed ID: 17768618
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparison between acetate and hydrogen as electron donors and implications for the reductive dehalogenation of PCE and TCE.
    Lee IS; Bae JH; McCarty PL
    J Contam Hydrol; 2007 Oct; 94(1-2):76-85. PubMed ID: 17610987
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chitin and corncobs as electron donor sources for the reductive dechlorination of tetrachloroethene.
    Brennan RA; Sanford RA; Werth CJ
    Water Res; 2006 Jun; 40(11):2125-34. PubMed ID: 16725176
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Simultaneous anaerobic transformation of carbon tetrachloride to carbon dioxide and tetrachloroethene to ethene in a continuous flow column.
    Azizian MF; Semprini L
    J Contam Hydrol; 2017 Aug; 203():93-103. PubMed ID: 28716488
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluation of polyethylene hollow-fiber membranes for hydrogen delivery to support reductive dechlorination in a soil column.
    Ma X; Novak PJ; Clapp LW; Semmens MJ; Hozalski RM
    Water Res; 2003 Jul; 37(12):2905-18. PubMed ID: 12767293
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biostimulation of indigenous communities for the successful dechlorination of tetrachloroethene (perchloroethylene)-contaminated groundwater.
    Patil SS; Adetutu EM; Aburto-Medina A; Menz IR; Ball AS
    Biotechnol Lett; 2014 Jan; 36(1):75-83. PubMed ID: 24101252
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bioaugmentation for treatment of dense non-aqueous phase liquid in fractured sandstone blocks.
    Schaefer CE; Towne RM; Vainberg S; McCray JE; Steffan RJ
    Environ Sci Technol; 2010 Jul; 44(13):4958-64. PubMed ID: 20524648
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhanced reductive dechlorination of tetrachloroethene during reduction of cobalamin (III) by nano-mackinawite.
    Amir A; Lee W
    J Hazard Mater; 2012 Oct; 235-236():359-66. PubMed ID: 22939091
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparison of pulsed and continuous addition of H2 gas via membranes for stimulating PCE biodegradation in soil columns.
    Ma X; Novak PJ; Semmens MJ; Clapp LW; Hozalski RM
    Water Res; 2006 Mar; 40(6):1155-66. PubMed ID: 16499946
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Concentration effect of copper loading on the reductive dechlorination of tetrachloroethylene by zerovalent silicon.
    Lee CC; Doong RA
    Water Sci Technol; 2010; 62(1):28-35. PubMed ID: 20595750
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaluation of a laboratory-scale bioreactive in situ sediment cap for the treatment of organic contaminants.
    Himmelheber DW; Pennell KD; Hughes JB
    Water Res; 2011 Nov; 45(17):5365-74. PubMed ID: 21872291
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.