BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 24636917)

  • 1. Hydrothermal conversion of lignin to substituted phenols and aromatic ethers.
    Singh R; Prakash A; Dhiman SK; Balagurumurthy B; Arora AK; Puri SK; Bhaskar T
    Bioresour Technol; 2014 Aug; 165():319-22. PubMed ID: 24636917
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conversion of rice straw to monomeric phenols under supercritical methanol and ethanol.
    Singh R; Srivastava V; Chaudhary K; Gupta P; Prakash A; Balagurumurthy B; Bhaskar T
    Bioresour Technol; 2015; 188():280-6. PubMed ID: 25603730
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective, nickel-catalyzed hydrogenolysis of aryl ethers.
    Sergeev AG; Hartwig JF
    Science; 2011 Apr; 332(6028):439-43. PubMed ID: 21512027
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of various reaction parameters on solvolytical depolymerization of lignin in sub- and supercritical ethanol.
    Kim JY; Oh S; Hwang H; Cho TS; Choi IG; Choi JW
    Chemosphere; 2013 Nov; 93(9):1755-64. PubMed ID: 23820536
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catalytic hydrothermal liquefaction of water hyacinth.
    Singh R; Balagurumurthy B; Prakash A; Bhaskar T
    Bioresour Technol; 2015 Feb; 178():157-165. PubMed ID: 25240515
    [TBL] [Abstract][Full Text] [Related]  

  • 6. One-step ethanolysis of lignin into small-molecular aromatic hydrocarbons over nano-SiC catalyst.
    Chen Y; Wang F; Jia Y; Yang N; Zhang X
    Bioresour Technol; 2017 Feb; 226():145-149. PubMed ID: 27997868
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catalytic lignin valorization process for the production of aromatic chemicals and hydrogen.
    Zakzeski J; Jongerius AL; Bruijnincx PC; Weckhuysen BM
    ChemSusChem; 2012 Aug; 5(8):1602-9. PubMed ID: 22740175
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conversion of kraft lignin under hydrothermal conditions.
    Zhou XF
    Bioresour Technol; 2014 Oct; 170():583-586. PubMed ID: 25176169
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 13C assignments of the carbon atoms in the aromatic rings of lignin model compounds of the arylglycerol beta-aryl ether type.
    Bardet M; Lundquist K; Parkås J; Robert D; von Unge S
    Magn Reson Chem; 2006 Oct; 44(10):976-9. PubMed ID: 16835899
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrodeoxygenation of lignin-derived phenolic compounds to hydrocarbons over Ni/SiO2-ZrO2 catalysts.
    Zhang X; Zhang Q; Wang T; Ma L; Yu Y; Chen L
    Bioresour Technol; 2013 Apr; 134():73-80. PubMed ID: 23500562
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalytic hydrothermal upgradation of wheat husk.
    Singh R; Bhaskar T; Dora S; Balagurumurthy B
    Bioresour Technol; 2013 Dec; 149():446-51. PubMed ID: 24140848
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ni-catalyzed cleavage of aryl ethers in the aqueous phase.
    He J; Zhao C; Lercher JA
    J Am Chem Soc; 2012 Dec; 134(51):20768-75. PubMed ID: 23190332
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydro-liquefaction of microcrystalline cellulose, xylan and industrial lignin in different supercritical solvents.
    Li Q; Liu D; Hou X; Wu P; Song L; Yan Z
    Bioresour Technol; 2016 Nov; 219():281-288. PubMed ID: 27497089
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Liquefaction of bio-mass in hot-compressed water for the production of phenolic compounds.
    Tymchyshyn M; Xu CC
    Bioresour Technol; 2010 Apr; 101(7):2483-90. PubMed ID: 20031393
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrochemical cleavage of aryl ethers promoted by sodium borohydride.
    Wu WB; Huang JM
    J Org Chem; 2014 Nov; 79(21):10189-95. PubMed ID: 25317950
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomimetic Fenton-catalyzed lignin depolymerization to high-value aromatics and dicarboxylic acids.
    Zeng J; Yoo CG; Wang F; Pan X; Vermerris W; Tong Z
    ChemSusChem; 2015 Mar; 8(5):861-71. PubMed ID: 25663189
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization of hydrothermal pretreatment of lignocellulosic biomass in the bioethanol production process.
    Nitsos CK; Matis KA; Triantafyllidis KS
    ChemSusChem; 2013 Jan; 6(1):110-22. PubMed ID: 23180649
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Slow pyrolysis of prot, alkali and dealkaline lignins for production of chemicals.
    Biswas B; Singh R; Kumar J; Khan AA; Krishna BB; Bhaskar T
    Bioresour Technol; 2016 Aug; 213():319-326. PubMed ID: 26873286
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of temperature on the catalytic conversion of Kraft lignin using near-critical water.
    Nguyen TDH; Maschietti M; Åmand LE; Vamling L; Olausson L; Andersson SI; Theliander H
    Bioresour Technol; 2014 Oct; 170():196-203. PubMed ID: 25137090
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism on microwave-assisted acidic solvolysis of black-liquor lignin.
    Dong C; Feng C; Liu Q; Shen D; Xiao R
    Bioresour Technol; 2014 Jun; 162():136-41. PubMed ID: 24747392
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.