These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 24636917)

  • 41. Maximizing the liquid fuel yield in a biorefining process.
    Zhang B; von Keitz M; Valentas K
    Biotechnol Bioeng; 2008 Dec; 101(5):903-12. PubMed ID: 18781691
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effects of chemical form of sodium on the product characteristics of alkali lignin pyrolysis.
    Guo DL; Yuan HY; Yin XL; Wu CZ; Wu SB; Zhou ZQ
    Bioresour Technol; 2014; 152():147-53. PubMed ID: 24291315
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Sub-supercritical liquefaction of rice stalk for the production of bio-oil: Effect of solvents.
    Li R; Li B; Yang T; Kai X; Wang W; Jie Y; Zhang Y; Chen G
    Bioresour Technol; 2015 Dec; 198():94-100. PubMed ID: 26378960
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effects of a steam explosion pretreatment on sugar production by enzymatic hydrolysis and structural properties of reed straw.
    Hu Q; Su X; Tan L; Liu X; Wu A; Su D; Tian K; Xiong X
    Biosci Biotechnol Biochem; 2013; 77(11):2181-7. PubMed ID: 24200776
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Chemical structure of bioethanol lignin by low-temperature alkaline catalytic hydrothermal treatment].
    Liu XH; Zhang MM; Wang JF; Xu YZ; Wang CP; Chu FX
    Guang Pu Xue Yu Guang Pu Fen Xi; 2013 Nov; 33(11):2940-4. PubMed ID: 24555356
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Conversion of secondary pulp/paper sludge powder to liquid oil products for energy recovery by direct liquefaction in hot-compressed water.
    Xu C; Lancaster J
    Water Res; 2008 Mar; 42(6-7):1571-82. PubMed ID: 18048075
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Pyrolysis behaviors of four lignin polymers isolated from the same pine wood.
    Wang S; Ru B; Lin H; Sun W; Luo Z
    Bioresour Technol; 2015 Apr; 182():120-127. PubMed ID: 25686545
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Hydro- and solvothermolysis of kraft lignin for maximizing production of monomeric aromatic chemicals.
    Lee HS; Jae J; Ha JM; Suh DJ
    Bioresour Technol; 2016 Mar; 203():142-9. PubMed ID: 26722814
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Understanding the degree of condensation of phenolic and etherified C-9 units of in situ lignins.
    Nanayakkara B; Manley-Harris M; Suckling ID
    J Agric Food Chem; 2011 Dec; 59(23):12514-9. PubMed ID: 22004365
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Influence of ultrasonic pretreatment on the yield of bio-oil prepared by thermo-chemical conversion of rice husk in hot-compressed water.
    Shi W; Jia J; Gao Y; Zhao Y
    Bioresour Technol; 2013 Oct; 146():355-362. PubMed ID: 23948273
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Hydrothermal degradation of lignin: products analysis for phenol formaldehyde adhesive synthesis.
    Yang S; Yuan TQ; Li MF; Sun RC
    Int J Biol Macromol; 2015 Jan; 72():54-62. PubMed ID: 25109457
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Lignin-rich biomass of cotton by-products for biorefineries via pyrolysis.
    Chen J; Liang J; Wu S
    Bioresour Technol; 2016 Oct; 218():402-9. PubMed ID: 27393830
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Comparison of the pyrolysis behavior of lignins from different tree species.
    Wang S; Wang K; Liu Q; Gu Y; Luo Z; Cen K; Fransson T
    Biotechnol Adv; 2009; 27(5):562-7. PubMed ID: 19393737
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Extraction of phenols from lignin microwave-pyrolysis oil using a switchable hydrophilicity solvent.
    Fu D; Farag S; Chaouki J; Jessop PG
    Bioresour Technol; 2014 Feb; 154():101-8. PubMed ID: 24384316
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Lignin solubilization and aqueous phase reforming for the production of aromatic chemicals and hydrogen.
    Zakzeski J; Weckhuysen BM
    ChemSusChem; 2011 Mar; 4(3):369-78. PubMed ID: 21246746
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Alkaline hydrothermal liquefaction of swine carcasses to bio-oil.
    Zheng JL; Zhu MQ; Wu HT
    Waste Manag; 2015 Sep; 43():230-8. PubMed ID: 26013692
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Structural characterization of poplar lignin based on the microwave-assisted hydrothermal pretreatment.
    Sun SF; Yang HY; Yang J; Shi ZJ
    Int J Biol Macromol; 2021 Nov; 190():360-367. PubMed ID: 34499950
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effect of residence time on two-step liquefaction of rice straw in a CO
    Yang T; Wang J; Li B; Kai X; Li R
    Bioresour Technol; 2017 Apr; 229():143-151. PubMed ID: 28110231
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Solvent effects on the hydrogenolysis of diphenyl ether with Raney nickel and their implications for the conversion of lignin.
    Wang X; Rinaldi R
    ChemSusChem; 2012 Aug; 5(8):1455-66. PubMed ID: 22549827
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Hydrolytic degradation of alkaline lignin in hot-compressed water and ethanol.
    Yuan Z; Cheng S; Leitch M; Xu CC
    Bioresour Technol; 2010 Dec; 101(23):9308-13. PubMed ID: 20667719
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.