BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 24637171)

  • 1. Rolling circle amplification combined with gold nanoparticles-tag for ultra sensitive and specific quantification of DNA by inductively coupled plasma mass spectrometry.
    He Y; Chen D; Li M; Fang L; Yang W; Xu L; Fu F
    Biosens Bioelectron; 2014 Aug; 58():209-13. PubMed ID: 24637171
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrasensitive colorimetric DNA detection using a combination of rolling circle amplification and nicking endonuclease-assisted nanoparticle amplification (NEANA).
    Xu W; Xie X; Li D; Yang Z; Li T; Liu X
    Small; 2012 Jun; 8(12):1846-50. PubMed ID: 22461378
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cocaine detection via rolling circle amplification of short DNA strand separated by magnetic beads.
    Ma C; Wang W; Yang Q; Shi C; Cao L
    Biosens Bioelectron; 2011 Mar; 26(7):3309-12. PubMed ID: 21277763
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A microfluidic chip-based fluorescent biosensor for the sensitive and specific detection of label-free single-base mismatch via magnetic beads-based "sandwich" hybridization strategy.
    Wang Z; Fan Y; Chen J; Guo Y; Wu W; He Y; Xu L; Fu F
    Electrophoresis; 2013 Aug; 34(15):2177-84. PubMed ID: 23712850
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gold nanoparticle-based inductively coupled plasma mass spectrometry amplification and magnetic separation for the sensitive detection of a virus-specific RNA sequence.
    Hsu IH; Chen WH; Wu TK; Sun YC
    J Chromatogr A; 2011 Apr; 1218(14):1795-801. PubMed ID: 21376334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A colorimetric method for H1N1 DNA detection using rolling circle amplification.
    Xing Y; Wang P; Zang Y; Ge Y; Jin Q; Zhao J; Xu X; Zhao G; Mao H
    Analyst; 2013 Jun; 138(12):3457-62. PubMed ID: 23653903
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rolling circle amplification combined with gold nanoparticle aggregates for highly sensitive identification of single-nucleotide polymorphisms.
    Li J; Deng T; Chu X; Yang R; Jiang J; Shen G; Yu R
    Anal Chem; 2010 Apr; 82(7):2811-6. PubMed ID: 20192245
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aptamer-linked assay for thrombin using gold nanoparticle amplification and inductively coupled plasma-mass spectrometry detection.
    Zhao Q; Lu X; Yuan CG; Li XF; Le XC
    Anal Chem; 2009 Sep; 81(17):7484-9. PubMed ID: 19670869
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensitive colorimetric detection of Listeria monocytogenes based on isothermal gene amplification and unmodified gold nanoparticles.
    Fu Z; Zhou X; Xing D
    Methods; 2013 Dec; 64(3):260-6. PubMed ID: 23948710
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel electrically magnetic-controllable electrochemical biosensor for the ultra sensitive and specific detection of attomolar level oral cancer-related microRNA.
    Wang Z; Zhang J; Guo Y; Wu X; Yang W; Xu L; Chen J; Fu F
    Biosens Bioelectron; 2013 Jul; 45():108-13. PubMed ID: 23455049
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Periodic assembly of nanospecies on repetitive DNA sequences generated on gold nanoparticles by rolling circle amplification.
    Zhao W; Brook MA; Li Y
    Methods Mol Biol; 2008; 474():79-90. PubMed ID: 19031062
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA assay based on monolayer-barcoded nanoparticles for mass spectrometry in combination with magnetic microprobes.
    Qiu F; Gu K; Yang B; Ding Y; Jiang D; Wu Y; Huang LL
    Talanta; 2011 Sep; 85(3):1698-702. PubMed ID: 21807242
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gold nanoparticle enhanced fluorescence anisotropy for the assay of single nucleotide polymorphisms (SNPs) based on toehold-mediated strand-displacement reaction.
    Wang X; Zou M; Huang H; Ren Y; Li L; Yang X; Li N
    Biosens Bioelectron; 2013 Mar; 41():569-75. PubMed ID: 23062556
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sub-femtomolar DNA detection based on layered molybdenum disulfide/multi-walled carbon nanotube composites, Au nanoparticle and enzyme multiple signal amplification.
    Huang KJ; Liu YJ; Wang HB; Wang YY; Liu YM
    Biosens Bioelectron; 2014 May; 55():195-202. PubMed ID: 24384259
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nano-particle labelling of nucleic acids for enhanced detection by inductively-coupled plasma mass spectrometry (ICP-MS).
    Kerr SL; Sharp B
    Chem Commun (Camb); 2007 Nov; (43):4537-9. PubMed ID: 17971981
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A universal platform for sensitive and selective colorimetric DNA detection based on Exo III assisted signal amplification.
    Cui L; Ke G; Zhang WY; Yang CJ
    Biosens Bioelectron; 2011 Jan; 26(5):2796-800. PubMed ID: 21130640
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomineralization-assisted ultrasensitive detection of DNA.
    Zhou X; Xia S; Lu Z; Tian Y; Yan Y; Zhu J
    J Am Chem Soc; 2010 May; 132(20):6932-4. PubMed ID: 20441191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. General colorimetric detection of proteins and small molecules based on cyclic enzymatic signal amplification and hairpin aptamer probe.
    Li J; Fu HE; Wu LJ; Zheng AX; Chen GN; Yang HH
    Anal Chem; 2012 Jun; 84(12):5309-15. PubMed ID: 22642720
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemiluminescence DNA biosensor based on dual-amplification of thrombin and thiocyanuric acid-gold nanoparticle network.
    Li X; Li W; Zhang S
    Analyst; 2010 Feb; 135(2):332-6. PubMed ID: 20098767
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Label-free detection of specific DNA sequence-telomere using unmodified gold nanoparticles as colorimetric probes.
    Qi Y; Li L; Li B
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Sep; 74(1):127-31. PubMed ID: 19523870
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.