BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 24637352)

  • 1. Genetic linkage mapping and transmission ratio distortion in a three-generation four-founder population of Panicum virgatum (L.).
    Li G; Serba DD; Saha MC; Bouton JH; Lanzatella CL; Tobias CM
    G3 (Bethesda); 2014 Mar; 4(5):913-23. PubMed ID: 24637352
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Complete switchgrass genetic maps reveal subgenome collinearity, preferential pairing and multilocus interactions.
    Okada M; Lanzatella C; Saha MC; Bouton J; Wu R; Tobias CM
    Genetics; 2010 Jul; 185(3):745-60. PubMed ID: 20407132
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of genomic organization in switchgrass (Panicum virgatum L.) using DNA markers.
    Missaoui AM; Paterson AH; Bouton JH
    Theor Appl Genet; 2005 May; 110(8):1372-83. PubMed ID: 15841364
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a genome-wide multiple duplex-SSR protocol and its applications for the identification of selfed progeny in switchgrass.
    Liu L; Wu Y
    BMC Genomics; 2012 Oct; 13():522. PubMed ID: 23031617
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A SSR-based composite genetic linkage map for the cultivated peanut (Arachis hypogaea L.) genome.
    Hong Y; Chen X; Liang X; Liu H; Zhou G; Li S; Wen S; Holbrook CC; Guo B
    BMC Plant Biol; 2010 Jan; 10():17. PubMed ID: 20105299
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-Density Single Nucleotide Polymorphism Linkage Maps of Lowland Switchgrass using Genotyping-by-Sequencing.
    Fiedler JD; Lanzatella C; Okada M; Jenkins J; Schmutz J; Tobias CM
    Plant Genome; 2015 Jul; 8(2):eplantgenome2014.10.0065. PubMed ID: 33228324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A high-density simple sequence repeat-based genetic linkage map of switchgrass.
    Liu L; Wu Y; Wang Y; Samuels T
    G3 (Bethesda); 2012 Mar; 2(3):357-70. PubMed ID: 22413090
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Natural variation in genes potentially involved in plant architecture and adaptation in switchgrass (Panicum virgatum L.).
    Bahri BA; Daverdin G; Xu X; Cheng JF; Barry KW; Brummer EC; Devos KM
    BMC Evol Biol; 2018 Jun; 18(1):91. PubMed ID: 29898656
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of 1,030 genomic SSR markers in switchgrass.
    Wang YW; Samuels TD; Wu YQ
    Theor Appl Genet; 2011 Mar; 122(4):677-86. PubMed ID: 20978736
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accuracy of Genomic Prediction in Switchgrass (Panicum virgatum L.) Improved by Accounting for Linkage Disequilibrium.
    Ramstein GP; Evans J; Kaeppler SM; Mitchell RB; Vogel KP; Buell CR; Casler MD
    G3 (Bethesda); 2016 Apr; 6(4):1049-62. PubMed ID: 26869619
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An SSR- and AFLP-based genetic linkage map of tall fescue (Festuca arundinacea Schreb.).
    Saha MC; Mian R; Zwonitzer JC; Chekhovskiy K; Hopkins AA
    Theor Appl Genet; 2005 Jan; 110(2):323-36. PubMed ID: 15558229
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mapping quantitative trait loci for biomass yield and yield-related traits in lowland switchgrass (Panicum virgatum L.) multiple populations.
    Shrestha SL; Tobias CM; Bhandari HS; Bragg J; Nayak S; Goddard K; Allen F
    G3 (Bethesda); 2023 May; 13(5):. PubMed ID: 36947434
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SNP discovery with EST and NextGen sequencing in switchgrass (Panicum virgatum L.).
    Ersoz ES; Wright MH; Pangilinan JL; Sheehan MJ; Tobias C; Casler MD; Buckler ES; Costich DE
    PLoS One; 2012; 7(9):e44112. PubMed ID: 23049744
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New genomic resources for switchgrass: a BAC library and comparative analysis of homoeologous genomic regions harboring bioenergy traits.
    Saski CA; Li Z; Feltus FA; Luo H
    BMC Genomics; 2011 Jul; 12():369. PubMed ID: 21767393
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Construction of a high-density DArTseq SNP-based genetic map and identification of genomic regions with segregation distortion in a genetic population derived from a cross between feral and cultivated-type watermelon.
    Ren R; Ray R; Li P; Xu J; Zhang M; Liu G; Yao X; Kilian A; Yang X
    Mol Genet Genomics; 2015 Aug; 290(4):1457-70. PubMed ID: 25702268
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of marker segregation distortion on high density linkage map construction and QTL mapping in Soybean (Glycine max L.).
    Zuo JF; Niu Y; Cheng P; Feng JY; Han SF; Zhang YH; Shu G; Wang Y; Zhang YM
    Heredity (Edinb); 2019 Nov; 123(5):579-592. PubMed ID: 31152165
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nucleotide polymorphism and copy number variant detection using exome capture and next-generation sequencing in the polyploid grass Panicum virgatum.
    Evans J; Kim J; Childs KL; Vaillancourt B; Crisovan E; Nandety A; Gerhardt DJ; Richmond TA; Jeddeloh JA; Kaeppler SM; Casler MD; Buell CR
    Plant J; 2014 Sep; 79(6):993-1008. PubMed ID: 24947485
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic linkage map of the interspecific grape rootstock cross Ramsey (Vitis champinii) x Riparia Gloire (Vitis riparia).
    Lowe KM; Walker MA
    Theor Appl Genet; 2006 May; 112(8):1582-92. PubMed ID: 16607514
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Switchgrass genomic diversity, ploidy, and evolution: novel insights from a network-based SNP discovery protocol.
    Lu F; Lipka AE; Glaubitz J; Elshire R; Cherney JH; Casler MD; Buckler ES; Costich DE
    PLoS Genet; 2013; 9(1):e1003215. PubMed ID: 23349638
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Construction of a consensus linkage map for red clover (Trifolium pratense L.).
    Isobe S; Kölliker R; Hisano H; Sasamoto S; Wada T; Klimenko I; Okumura K; Tabata S
    BMC Plant Biol; 2009 May; 9():57. PubMed ID: 19442273
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.