These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 24637356)

  • 1. Monitoring changes in membrane polarity, membrane integrity, and intracellular ion concentrations in Streptococcus pneumoniae using fluorescent dyes.
    Clementi EA; Marks LR; Roche-Håkansson H; Håkansson AP
    J Vis Exp; 2014 Feb; (84):e51008. PubMed ID: 24637356
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement of cation movement in primary cultures using fluorescent dyes.
    Reynolds IJ
    Curr Protoc Neurosci; 2001 May; Chapter 7():Unit7.11. PubMed ID: 18428522
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Methods to Measure Intracellular Ca
    Zanin S; Lidron E; Rizzuto R; Pallafacchina G
    Methods Mol Biol; 2019; 1925():43-58. PubMed ID: 30674015
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Membrane potential and cation content of osteoblast-like cells (UMR 106) assessed by fluorescent dyes.
    Civitelli R; Reid IR; Halstead LR; Avioli LV; Hruska KA
    J Cell Physiol; 1987 Jun; 131(3):434-41. PubMed ID: 3474236
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of the uptake of the fluorescent marker 2',7'-bis-(2-carboxyethyl)-5(and-6)-carboxyfluorescein (BCECF) by hydrogenosomes in Trichomonas vaginalis.
    Scott DA; Docampo R; Benchimol M
    Eur J Cell Biol; 1998 Jun; 76(2):139-45. PubMed ID: 9696354
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of the physical environment within the Chlamydia trachomatis inclusion using ion-selective ratiometric probes.
    Grieshaber S; Swanson JA; Hackstadt T
    Cell Microbiol; 2002 May; 4(5):273-83. PubMed ID: 12027956
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional calcium imaging in developing cortical networks.
    Dawitz J; Kroon T; Hjorth JJ; Meredith RM
    J Vis Exp; 2011 Oct; (56):. PubMed ID: 22041662
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A guide for membrane potential measurements in Gram-negative bacteria using voltage-sensitive dyes.
    Buttress JA; Halte M; Te Winkel JD; Erhardt M; Popp PF; Strahl H
    Microbiology (Reading); 2022 Sep; 168(9):. PubMed ID: 36165741
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects on Rb(+)(K+) uptake of HeLa cells in a high K(+) medium of exposure to a switched 1.7 Tesla magnetic field.
    Ikehara T; Park KH; Yamaguchi H; Hosokawa K; Yoshizaki K; Miyamoto H; Aizawa K; Kinouchi Y
    Bioelectromagnetics; 2000 Apr; 21(3):228-37. PubMed ID: 10723022
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct imaging of ER calcium with targeted-esterase induced dye loading (TED).
    Samtleben S; Jaepel J; Fecher C; Andreska T; Rehberg M; Blum R
    J Vis Exp; 2013 May; (75):e50317. PubMed ID: 23685703
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Usefulness and limitation of DiBAC4(3), a voltage-sensitive fluorescent dye, for the measurement of membrane potentials regulated by recombinant large conductance Ca2+-activated K+ channels in HEK293 cells.
    Yamada A; Gaja N; Ohya S; Muraki K; Narita H; Ohwada T; Imaizumi Y
    Jpn J Pharmacol; 2001 Jul; 86(3):342-50. PubMed ID: 11488436
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recording of intracellular Ca2+, Cl-, pH and membrane potential in cultured astrocytes using a fluorescence plate reader.
    Manning TJ; Sontheimer H
    J Neurosci Methods; 1999 Sep; 91(1-2):73-81. PubMed ID: 10522826
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lipid factor (bVLF) from bovine vitreous body evokes in EGFR-T17 cells a Ca2+-dependent K+ current associated with inositol 1,4,5-trisphosphate-independent Ca2+ mobilization.
    Camiña JP; Diaz-Rodriguez E; Harks EG; Theuvenet AP; Ypey DL; Casanueva FF
    J Cell Physiol; 2003 Apr; 195(1):108-18. PubMed ID: 12599214
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Membrane potentials associated with Ca-induced K conductance in human red blood cells: studies with a fluorescent oxonol dye, WW 781.
    Freedman JC; Novak TS
    J Membr Biol; 1983; 72(1-2):59-74. PubMed ID: 6406671
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Early changes in membrane potential of Saccharomyces cerevisiae induced by varying extracellular K(+), Na (+) or H (+) concentrations.
    Plášek J; Gášková D; Ludwig J; Höfer M
    J Bioenerg Biomembr; 2013 Dec; 45(6):561-8. PubMed ID: 24052423
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monitoring membrane potentials in Ehrlich ascites tumor cells by means of a fluorescent dye.
    Laris PC; Pershadsingh HA; Johnstone RM
    Biochim Biophys Acta; 1976 Jun; 436(2):475-88. PubMed ID: 1276225
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing the transmembrane potential of bacterial cells by voltage-sensitive dyes.
    Suzuki H; Wang ZY; Yamakoshi M; Kobayashi M; Nozawa T
    Anal Sci; 2003 Sep; 19(9):1239-42. PubMed ID: 14516073
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative measurement of cationic fluxes, selectivity and membrane potential using liposomes multilabelled with fluorescent probes.
    Venema K; Gibrat R; Grouzis JP; Grignon C
    Biochim Biophys Acta; 1993 Feb; 1146(1):87-96. PubMed ID: 8382957
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical measurements of Na-Ca-K exchange currents in intact outer segments isolated from bovine retinal rods.
    Schnetkamp PP
    J Gen Physiol; 1991 Sep; 98(3):555-73. PubMed ID: 1722239
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combining Ca2+ and membrane potential imaging in single neurons.
    Canepari M; Vogt KE; De Waard M; Zecevic D
    Cold Spring Harb Protoc; 2013 Dec; 2013(12):1161-4. PubMed ID: 24298027
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.