These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 24637415)

  • 1. Lipid bilayer vesicle generation using microfluidic jetting.
    Coyne CW; Patel K; Heureaux J; Stachowiak J; Fletcher DA; Liu AP
    J Vis Exp; 2014 Feb; (84):e51510. PubMed ID: 24637415
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unilamellar vesicle formation and encapsulation by microfluidic jetting.
    Stachowiak JC; Richmond DL; Li TH; Liu AP; Parekh SH; Fletcher DA
    Proc Natl Acad Sci U S A; 2008 Mar; 105(12):4697-702. PubMed ID: 18353990
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Microfluidic Platform for Sequential Assembly and Separation of Synthetic Cell Models.
    Tivony R; Fletcher M; Al Nahas K; Keyser UF
    ACS Synth Biol; 2021 Nov; 10(11):3105-3116. PubMed ID: 34761904
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inkjet formation of unilamellar lipid vesicles for cell-like encapsulation.
    Stachowiak JC; Richmond DL; Li TH; Brochard-Wyart F; Fletcher DA
    Lab Chip; 2009 Jul; 9(14):2003-9. PubMed ID: 19568667
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Asymmetric giant lipid vesicle fabrication.
    Hu PC; Malmstadt N
    Methods Mol Biol; 2015; 1232():79-90. PubMed ID: 25331129
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesizing artificial cells from giant unilamellar vesicles: state-of-the art in the development of microfluidic technology.
    Matosevic S
    Bioessays; 2012 Nov; 34(11):992-1001. PubMed ID: 22926929
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Membrane composition of jetted lipid vesicles: a Raman spectroscopy study.
    Kirchner SR; Ohlinger A; Pfeiffer T; Urban AS; Stefani FD; Deak A; Lutich AA; Feldmann J
    J Biophotonics; 2012 Jan; 5(1):40-6. PubMed ID: 22147675
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Forming and loading giant unilamellar vesicles with acoustic jetting.
    Armstrong M; Vahey MD; Hunt TP; Fletcher DA
    Biomicrofluidics; 2020 Nov; 14(6):064105. PubMed ID: 33269034
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation and mechanical characterisation of giant unilamellar vesicles by a microfluidic method.
    Karamdad K; Law RV; Seddon JM; Brooks NJ; Ces O
    Lab Chip; 2015 Jan; 15(2):557-62. PubMed ID: 25413588
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mixing solutions in inkjet formed vesicles.
    Li TH; Stachowiak JC; Fletcher DA
    Methods Enzymol; 2009; 465():75-94. PubMed ID: 19913162
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative optical microscopy and micromanipulation studies on the lipid bilayer membranes of giant unilamellar vesicles.
    Bagatolli LA; Needham D
    Chem Phys Lipids; 2014 Jul; 181():99-120. PubMed ID: 24632023
    [TBL] [Abstract][Full Text] [Related]  

  • 12. One-Pot Assembly of Complex Giant Unilamellar Vesicle-Based Synthetic Cells.
    Göpfrich K; Haller B; Staufer O; Dreher Y; Mersdorf U; Platzman I; Spatz JP
    ACS Synth Biol; 2019 May; 8(5):937-947. PubMed ID: 31042361
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functionalized Vesicles by Microfluidic Device.
    Vallejo D; Lee SH; Lee A
    Methods Mol Biol; 2017; 1572():489-510. PubMed ID: 28299707
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid Encapsulation of Reconstituted Cytoskeleton Inside Giant Unilamellar Vesicles.
    Bashirzadeh Y; Wubshet N; Litschel T; Schwille P; Liu AP
    J Vis Exp; 2021 Nov; (177):. PubMed ID: 34842240
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On-chip generation of monodisperse giant unilamellar lipid vesicles containing quantum dots.
    Park YH; Lee DH; Um E; Park JK
    Electrophoresis; 2016 May; 37(10):1353-8. PubMed ID: 26920999
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimized cDICE for Efficient Reconstitution of Biological Systems in Giant Unilamellar Vesicles.
    Van de Cauter L; Fanalista F; van Buren L; De Franceschi N; Godino E; Bouw S; Danelon C; Dekker C; Koenderink GH; Ganzinger KA
    ACS Synth Biol; 2021 Jul; 10(7):1690-1702. PubMed ID: 34185516
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Light-Triggered Cargo Loading and Division of DNA-Containing Giant Unilamellar Lipid Vesicles.
    Dreher Y; Jahnke K; Schröter M; Göpfrich K
    Nano Lett; 2021 Jul; 21(14):5952-5957. PubMed ID: 34251204
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Construction of membrane-bound artificial cells using microfluidics: a new frontier in bottom-up synthetic biology.
    Elani Y
    Biochem Soc Trans; 2016 Jun; 44(3):723-30. PubMed ID: 27284034
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Continuous and Rapid Solution Exchange in a Lipid Bilayer Perfusion System Based on Droplet-Interface Bilayer.
    Lee EH
    Methods Mol Biol; 2021; 2186():197-211. PubMed ID: 32918739
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An integrated microfluidic platform to fabricate single-micrometer asymmetric giant unilamellar vesicles (GUVs) using dielectrophoretic separation of microemulsions.
    Maktabi S; Malmstadt N; Schertzer JW; Chiarot PR
    Biomicrofluidics; 2021 Mar; 15(2):024112. PubMed ID: 33912267
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.