These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 24637460)

  • 1. Protein-protein interactions visualized by bimolecular fluorescence complementation in tobacco protoplasts and leaves.
    Schweiger R; Schwenkert S
    J Vis Exp; 2014 Mar; (85):. PubMed ID: 24637460
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein-Protein Interactions Visualized by Bimolecular Fluorescence Complementation in Arabidopsis thaliana Protoplasts from Leaf.
    Jayasree A; Salava H; Nodzynski T; Thula S
    Methods Mol Biol; 2024; 2787():305-313. PubMed ID: 38656499
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visualization of RMRs (Receptor Membrane RING-H2) Dimerization in Nicotiana benthamiana Leaves Using a Bimolecular Fluorescence Complementation (BiFC) Assay.
    Occhialini A
    Methods Mol Biol; 2018; 1789():177-194. PubMed ID: 29916080
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of protein interactions in plant using a gateway compatible bimolecular fluorescence complementation (BiFC) system.
    Tian G; Lu Q; Zhang L; Kohalmi SE; Cui Y
    J Vis Exp; 2011 Sep; (55):. PubMed ID: 21947026
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trimolecular Fluorescence Complementation (TriFC) Assay for Visualization of RNA-Protein Interaction in Plants.
    Seo JS; Chua NH
    Methods Mol Biol; 2019; 1933():297-303. PubMed ID: 30945194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tobacco System for Studying Protein Colocalization and Interactions.
    Zhang J; He S
    Methods Mol Biol; 2021; 2297():167-174. PubMed ID: 33656681
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In Planta Visualization of Protein Interactions Using Bimolecular Fluorescence Complementation (BiFC).
    Waadt R; Kudla J
    CSH Protoc; 2008 Apr; 2008():pdb.prot4995. PubMed ID: 21356813
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Subcellular localization of interacting proteins by bimolecular fluorescence complementation in planta.
    Citovsky V; Lee LY; Vyas S; Glick E; Chen MH; Vainstein A; Gafni Y; Gelvin SB; Tzfira T
    J Mol Biol; 2006 Oct; 362(5):1120-31. PubMed ID: 16949607
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bimolecular fluorescence complementation as a tool to study interactions of regulatory proteins in plant protoplasts.
    Pattanaik S; Werkman JR; Yuan L
    Methods Mol Biol; 2011; 754():185-93. PubMed ID: 21720953
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bimolecular fluorescence complementation analysis of inducible protein interactions: effects of factors affecting protein folding on fluorescent protein fragment association.
    Robida AM; Kerppola TK
    J Mol Biol; 2009 Dec; 394(3):391-409. PubMed ID: 19733184
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determining the Subcellular Localization of Fluorescently Tagged Proteins Using Protoplasts Extracted from Transiently Transformed Nicotiana benthamiana Leaves.
    Rolland V
    Methods Mol Biol; 2018; 1770():263-283. PubMed ID: 29978408
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visualization and translocation of ternary Calcineurin-A/Calcineurin-B/Calmodulin-2 protein complexes by dual-color trimolecular fluorescence complementation.
    Offenborn JN; Waadt R; Kudla J
    New Phytol; 2015 Oct; 208(1):269-79. PubMed ID: 25919910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bimolecular Fluorescence Complementation (BiFC) in Host-Virus Interactions.
    Silva FDA; Machado JPB; Dos Reis PAB
    Methods Mol Biol; 2024; 2724():211-223. PubMed ID: 37987908
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The red fluorescent protein eqFP611: application in subcellular localization studies in higher plants.
    Forner J; Binder S
    BMC Plant Biol; 2007 Jun; 7():28. PubMed ID: 17553146
    [TBL] [Abstract][Full Text] [Related]  

  • 15. BiFC Assay to Detect Calmodulin Binding to Plant Receptor Kinases.
    Fischer C; Sauter M; Dietrich P
    Methods Mol Biol; 2017; 1621():141-149. PubMed ID: 28567651
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of Phytoplasmal Effector Protein Interaction with Proteinaceous Plant Host Targets Using Bimolecular Fluorescence Complementation (BiFC).
    Janik K; Stellmach H; Mittelberger C; Hause B
    Methods Mol Biol; 2019; 1875():321-331. PubMed ID: 30362014
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transient expression in Nicotiana benthamiana fluorescent marker lines provides enhanced definition of protein localization, movement and interactions in planta.
    Martin K; Kopperud K; Chakrabarty R; Banerjee R; Brooks R; Goodin MM
    Plant J; 2009 Jul; 59(1):150-62. PubMed ID: 19309457
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bimolecular Fluorescence Complementation analysis to reveal protein interactions in herpes virus infected cells.
    Hernandez FP; Sandri-Goldin RM
    Methods; 2011 Oct; 55(2):182-7. PubMed ID: 21820055
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visualization of protein interactions in living cells using bimolecular fluorescence complementation (BiFC) analysis.
    Hu CD; Grinberg AV; Kerppola TK
    Curr Protoc Cell Biol; 2006 Jan; Chapter 21():Unit 21.3. PubMed ID: 18228482
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visualization of VirE2 protein translocation by the Agrobacterium type IV secretion system into host cells.
    Sakalis PA; van Heusden GP; Hooykaas PJ
    Microbiologyopen; 2014 Feb; 3(1):104-17. PubMed ID: 24376037
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.