BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 24637721)

  • 1. Optimization of preparation of antioxidative peptides from pumpkin seeds using response surface method.
    Fan S; Hu Y; Li C; Liu Y
    PLoS One; 2014; 9(3):e92335. PubMed ID: 24637721
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antioxidative activities and phenolic compounds of pumpkin (Cucurbita pepo) seeds and amaranth (Amaranthus caudatus) grain extracts.
    Peiretti PG; Meineri G; Gai F; Longato E; Amarowicz R
    Nat Prod Res; 2017 Sep; 31(18):2178-2182. PubMed ID: 28114838
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization of hull-less pumpkin seed roasting conditions using response surface methodology.
    Vujasinović V; Radočaj O; Dimić E
    J Food Sci; 2012 May; 77(5):C532-8. PubMed ID: 23163936
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrasonic-assisted production of antioxidative polysaccharides from Crassostrea hongkongensis.
    Cai B; Pan J; Wan P; Chen D; Long S; Sun H
    Prep Biochem Biotechnol; 2014 Oct; 44(7):708-24. PubMed ID: 24905048
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro antioxidant properties of Cucurbita pepo L. male and female flowers extracts.
    Tarhan L; Kayali HA; Urek RO
    Plant Foods Hum Nutr; 2007 Jun; 62(2):49-51. PubMed ID: 17308962
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extraction optimization of polysaccharide from Zanthoxylum bungeanum using RSM and its antioxidant activity.
    Li P; Zhou L; Mou Y; Mao Z
    Int J Biol Macromol; 2015 Jan; 72():19-27. PubMed ID: 25111493
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Separation and screening of antioxidant peptides from
    Xue Y; Guo R; Zhang B
    Se Pu; 2020 Dec; 38(12):1431-1439. PubMed ID: 34213258
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation of anchovy (Engraulis japonicus) protein hydrolysates with high free radical-scavenging activity using endogenous and commercial enzymes.
    He S; Wang F; Ning Z; Yang B; Wang Y
    Food Sci Technol Int; 2014 Dec; 20(8):567-78. PubMed ID: 23922287
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of enzymatic hydrolysis and enzyme type on the nutritional and antioxidant properties of pumpkin meal hydrolysates.
    Venuste M; Zhang X; Shoemaker CF; Karangwa E; Abbas S; Kamdem PE
    Food Funct; 2013 Apr; 4(5):811-20. PubMed ID: 23591974
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrasound-assisted enzymatic extraction and antioxidant activity of polysaccharides from pumpkin (Cucurbita moschata).
    Wu H; Zhu J; Diao W; Wang C
    Carbohydr Polym; 2014 Nov; 113():314-24. PubMed ID: 25256490
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of free radical scavenging potential and oxidative DNA damage preventive activity of Trachyspermum ammi L. (carom) and Foeniculum vulgare Mill. (fennel) seed extracts.
    Goswami N; Chatterjee S
    Biomed Res Int; 2014; 2014():582767. PubMed ID: 25143939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel antioxidative peptide derived from chicken blood corpuscle hydrolysate.
    Zheng Z; Si D; Ahmad B; Li Z; Zhang R
    Food Res Int; 2018 Apr; 106():410-419. PubMed ID: 29579942
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antioxidant activities of hydrolysates of Arca subcrenata prepared with three proteases.
    Song L; Li T; Yu R; Yan C; Ren S; Zhao Y
    Mar Drugs; 2008; 6(4):607-19. PubMed ID: 19172198
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fibre from pumpkin (Cucurbita pepo L.) seeds and rinds: physico-chemical properties, antioxidant capacity and application as bakery product ingredients.
    Nyam KL; Lau M; Tan CP
    Malays J Nutr; 2013 Apr; 19(1):99-109. PubMed ID: 24800388
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of antioxidant peptides through hydrolysis of medicinal pumpkin seed protein using pepsin enzyme and the evaluation of their functional and nutritional properties.
    Mazloomi-Kiyapey SN; Sadeghi-Mahoonak A; Ranjbar-Nedamani E; Nourmohammadi E
    ARYA Atheroscler; 2019 Sep; 15(5):218-227. PubMed ID: 31949448
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Response surface optimization of mucilage aqueous extraction from flixweed (Descurainia sophia) seeds.
    Golalikhani M; Khodaiyan F; Khosravi A
    Int J Biol Macromol; 2014 Sep; 70():444-9. PubMed ID: 25036599
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simple method for determining human serum 2,2-diphenyl-1-picryl-hydrazyl (DPPH) radical scavenging activity - possible application in clinical studies on dietary antioxidants.
    Chrzczanowicz J; Gawron A; Zwolinska A; de Graft-Johnson J; Krajewski W; Krol M; Markowski J; Kostka T; Nowak D
    Clin Chem Lab Med; 2008; 46(3):342-9. PubMed ID: 18254708
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potent 2,2-diphenyl-1-picrylhydrazyl radical-scavenging activity of novel antioxidants, double-stranded tyrosine residues conjugating pyrocatechol.
    Kobayashi S; Waki T; Nakanishi I; Matsumoto K; Anzai K
    Chem Pharm Bull (Tokyo); 2010 Nov; 58(11):1442-6. PubMed ID: 21048334
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DPPH free radical scavenging activity and phenotypic difference in hepatoprotective plant (Silybum marianum L.).
    Ahmad N; Fazal H; Abbasi BH; Anwar S; Basir A
    Toxicol Ind Health; 2013 Jun; 29(5):460-7. PubMed ID: 22362017
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Response surface optimization of enzymatic hydrolysis and ROS scavenging activity of silk sericin hydrolysates.
    Joyjamras K; Chaotham C; Chanvorachote P
    Pharm Biol; 2022 Dec; 60(1):308-318. PubMed ID: 35148231
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.