BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 24637808)

  • 21. A two-stage approach for improved prediction of residue contact maps.
    Vullo A; Walsh I; Pollastri G
    BMC Bioinformatics; 2006 Mar; 7():180. PubMed ID: 16573808
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evaluation of residue-residue contact prediction in CASP10.
    Monastyrskyy B; D'Andrea D; Fidelis K; Tramontano A; Kryshtafovych A
    Proteins; 2014 Feb; 82 Suppl 2(0 2):138-53. PubMed ID: 23760879
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Improved residue contact prediction using support vector machines and a large feature set.
    Cheng J; Baldi P
    BMC Bioinformatics; 2007 Apr; 8():113. PubMed ID: 17407573
    [TBL] [Abstract][Full Text] [Related]  

  • 24. CONFOLD2: improved contact-driven ab initio protein structure modeling.
    Adhikari B; Cheng J
    BMC Bioinformatics; 2018 Jan; 19(1):22. PubMed ID: 29370750
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Detecting distant-homology protein structures by aligning deep neural-network based contact maps.
    Zheng W; Wuyun Q; Li Y; Mortuza SM; Zhang C; Pearce R; Ruan J; Zhang Y
    PLoS Comput Biol; 2019 Oct; 15(10):e1007411. PubMed ID: 31622328
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effective inter-residue contact definitions for accurate protein fold recognition.
    Yuan C; Chen H; Kihara D
    BMC Bioinformatics; 2012 Nov; 13():292. PubMed ID: 23140471
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Prediction of contacts from correlated sequence substitutions.
    Taylor WR; Hamilton RS; Sadowski MI
    Curr Opin Struct Biol; 2013 Jun; 23(3):473-9. PubMed ID: 23680395
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Direct-coupling analysis of residue coevolution captures native contacts across many protein families.
    Morcos F; Pagnani A; Lunt B; Bertolino A; Marks DS; Sander C; Zecchina R; Onuchic JN; Hwa T; Weigt M
    Proc Natl Acad Sci U S A; 2011 Dec; 108(49):E1293-301. PubMed ID: 22106262
    [TBL] [Abstract][Full Text] [Related]  

  • 29. De novo and inverse folding predictions of protein structure and dynamics.
    Godzik A; Kolinski A; Skolnick J
    J Comput Aided Mol Des; 1993 Aug; 7(4):397-438. PubMed ID: 8229093
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Prediction of beta-turns at over 80% accuracy based on an ensemble of predicted secondary structures and multiple alignments.
    Zheng C; Kurgan L
    BMC Bioinformatics; 2008 Oct; 9():430. PubMed ID: 18847492
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High precision in protein contact prediction using fully convolutional neural networks and minimal sequence features.
    Jones DT; Kandathil SM
    Bioinformatics; 2018 Oct; 34(19):3308-3315. PubMed ID: 29718112
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification of residue pairing in interacting β-strands from a predicted residue contact map.
    Mao W; Wang T; Zhang W; Gong H
    BMC Bioinformatics; 2018 Apr; 19(1):146. PubMed ID: 29673311
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Protein Residue Contacts and Prediction Methods.
    Adhikari B; Cheng J
    Methods Mol Biol; 2016; 1415():463-76. PubMed ID: 27115648
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Using multi-data hidden Markov models trained on local neighborhoods of protein structure to predict residue-residue contacts.
    Björkholm P; Daniluk P; Kryshtafovych A; Fidelis K; Andersson R; Hvidsten TR
    Bioinformatics; 2009 May; 25(10):1264-70. PubMed ID: 19289446
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Accurate prediction for atomic-level protein design and its application in diversifying the near-optimal sequence space.
    Fromer M; Yanover C
    Proteins; 2009 May; 75(3):682-705. PubMed ID: 19003998
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ab initio prediction of the three-dimensional structure of a de novo designed protein: a double-blind case study.
    Klepeis JL; Wei Y; Hecht MH; Floudas CA
    Proteins; 2005 Feb; 58(3):560-70. PubMed ID: 15609306
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Protein structure determination using metagenome sequence data.
    Ovchinnikov S; Park H; Varghese N; Huang PS; Pavlopoulos GA; Kim DE; Kamisetty H; Kyrpides NC; Baker D
    Science; 2017 Jan; 355(6322):294-298. PubMed ID: 28104891
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparing co-evolution methods and their application to template-free protein structure prediction.
    de Oliveira SH; Shi J; Deane CM
    Bioinformatics; 2017 Feb; 33(3):373-381. PubMed ID: 28171606
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Deep-learning contact-map guided protein structure prediction in CASP13.
    Zheng W; Li Y; Zhang C; Pearce R; Mortuza SM; Zhang Y
    Proteins; 2019 Dec; 87(12):1149-1164. PubMed ID: 31365149
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Assessing Predicted Contacts for Building Protein Three-Dimensional Models.
    Adhikari B; Bhattacharya D; Cao R; Cheng J
    Methods Mol Biol; 2017; 1484():115-126. PubMed ID: 27787823
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.