BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 24637938)

  • 1. Dissection of Xenopus laevis neural crest for in vitro explant culture or in vivo transplantation.
    Milet C; Monsoro-Burq AH
    J Vis Exp; 2014 Mar; (85):. PubMed ID: 24637938
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation and culture of neural crest cells from embryonic murine neural tube.
    Pfaltzgraff ER; Mundell NA; Labosky PA
    J Vis Exp; 2012 Jun; (64):e4134. PubMed ID: 22688801
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PFKFB4 control of AKT signaling is essential for premigratory and migratory neural crest formation.
    Figueiredo AL; Maczkowiak F; Borday C; Pla P; Sittewelle M; Pegoraro C; Monsoro-Burq AH
    Development; 2017 Nov; 144(22):4183-4194. PubMed ID: 29038306
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Early acquisition of neural crest competence during hESCs neuralization.
    Curchoe CL; Maurer J; McKeown SJ; Cattarossi G; Cimadamore F; Nilbratt M; Snyder EY; Bronner-Fraser M; Terskikh AV
    PLoS One; 2010 Nov; 5(11):e13890. PubMed ID: 21085480
    [TBL] [Abstract][Full Text] [Related]  

  • 5. microRNAs associated with early neural crest development in Xenopus laevis.
    Ward NJ; Green D; Higgins J; Dalmay T; Münsterberg A; Moxon S; Wheeler GN
    BMC Genomics; 2018 Jan; 19(1):59. PubMed ID: 29347911
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Musculocontractural Ehlers-Danlos syndrome and neurocristopathies: dermatan sulfate is required for Xenopus neural crest cells to migrate and adhere to fibronectin.
    Gouignard N; Maccarana M; Strate I; von Stedingk K; Malmström A; Pera EM
    Dis Model Mech; 2016 Jun; 9(6):607-20. PubMed ID: 27101845
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vital dye labelling of Xenopus laevis trunk neural crest reveals multipotency and novel pathways of migration.
    Collazo A; Bronner-Fraser M; Fraser SE
    Development; 1993 Jun; 118(2):363-76. PubMed ID: 7693414
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural crest development in the Xenopus laevis embryo, studied by interspecific transplantation and scanning electron microscopy.
    Sadaghiani B; Thiébaud CH
    Dev Biol; 1987 Nov; 124(1):91-110. PubMed ID: 3666314
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mapping of neural crest pathways in Xenopus laevis using inter- and intra-specific cell markers.
    Krotoski DM; Fraser SE; Bronner-Fraser M
    Dev Biol; 1988 May; 127(1):119-32. PubMed ID: 2452101
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ric-8A, a guanine nucleotide exchange factor for heterotrimeric G proteins, is critical for cranial neural crest cell migration.
    Fuentealba J; Toro-Tapia G; Arriagada C; Riquelme L; Beyer A; Henriquez JP; Caprile T; Mayor R; Marcellini S; Hinrichs MV; Olate J; Torrejón M
    Dev Biol; 2013 Jun; 378(2):74-82. PubMed ID: 23588098
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Xenopus embryo as a model system for studies of cell migration.
    DeSimone DW; Davidson L; Marsden M; Alfandari D
    Methods Mol Biol; 2005; 294():235-45. PubMed ID: 15576916
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tissue interactions involving cranial neural crest in cartilage formation in Xenopus laevis (Daudin).
    Seufert DW; Hall BK
    Cell Differ Dev; 1990 Dec; 32(2):153-65. PubMed ID: 2083397
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activity of the RhoU/Wrch1 GTPase is critical for cranial neural crest cell migration.
    Fort P; Guémar L; Vignal E; Morin N; Notarnicola C; de Santa Barbara P; Faure S
    Dev Biol; 2011 Feb; 350(2):451-63. PubMed ID: 21156169
    [TBL] [Abstract][Full Text] [Related]  

  • 14. E-cadherin is required for cranial neural crest migration in Xenopus laevis.
    Huang C; Kratzer MC; Wedlich D; Kashef J
    Dev Biol; 2016 Mar; 411(2):159-171. PubMed ID: 26879760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlled levels of canonical Wnt signaling are required for neural crest migration.
    Maj E; Künneke L; Loresch E; Grund A; Melchert J; Pieler T; Aspelmeier T; Borchers A
    Dev Biol; 2016 Sep; 417(1):77-90. PubMed ID: 27341758
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of neural crest migration and differentiation by cross-species transplantation.
    Griswold SL; Lwigale PY
    J Vis Exp; 2012 Feb; (60):. PubMed ID: 22349214
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using Xenopus Neural Crest Explants to Study Epithelial-Mesenchymal Transition.
    Gouignard N; Rouvière C; Theveneau E
    Methods Mol Biol; 2021; 2179():257-274. PubMed ID: 32939726
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dissection, Culture and Analysis of Primary Cranial Neural Crest Cells from Mouse for the Study of Neural Crest Cell Delamination and Migration.
    Gonzalez Malagon SG; Dobson L; Muñoz AML; Dawson M; Barrell W; Marangos P; Krause M; Liu KJ
    J Vis Exp; 2019 Oct; (152):. PubMed ID: 31633677
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual developmental role of transcriptional regulator Ets1 in Xenopus cardiac neural crest vs. heart mesoderm.
    Nie S; Bronner ME
    Cardiovasc Res; 2015 Apr; 106(1):67-75. PubMed ID: 25691536
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative Analysis of Directional Neural Crest Cell Migration.
    Nie S
    Methods Mol Biol; 2022; 2438():517-526. PubMed ID: 35147961
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.