BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 24638084)

  • 21. Single-molecule imaging reveals multiple pathways for the recruitment of translesion polymerases after DNA damage.
    Thrall ES; Kath JE; Chang S; Loparo JJ
    Nat Commun; 2017 Dec; 8(1):2170. PubMed ID: 29255195
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Visualizing the Interaction Between the Qdot-labeled Protein and Site-specifically Modified λ DNA at the Single Molecule Level.
    Xue H; Zhan Z; Zhang K; Fu YV
    J Vis Exp; 2018 Jul; (137):. PubMed ID: 30080193
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Internalization and observation of fluorescent biomolecules in living microorganisms via electroporation.
    Aigrain L; Sustarsic M; Crawford R; Plochowietz A; Kapanidis AN
    J Vis Exp; 2015 Feb; (96):. PubMed ID: 25741968
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Facilitated Unbinding via Multivalency-Enabled Ternary Complexes: New Paradigm for Protein-DNA Interactions.
    Chen TY; Cheng YS; Huang PS; Chen P
    Acc Chem Res; 2018 Apr; 51(4):860-868. PubMed ID: 29368512
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Studying the organization of DNA repair by single-cell and single-molecule imaging.
    Uphoff S; Kapanidis AN
    DNA Repair (Amst); 2014 Aug; 20(100):32-40. PubMed ID: 24629485
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A rapid method for detecting protein-nucleic acid interactions by protein induced fluorescence enhancement.
    Valuchova S; Fulnecek J; Petrov AP; Tripsianes K; Riha K
    Sci Rep; 2016 Dec; 6():39653. PubMed ID: 28008962
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Single-particle tracking photoactivated localization microscopy for mapping single-molecule dynamics.
    Manley S; Gillette JM; Lippincott-Schwartz J
    Methods Enzymol; 2010; 475():109-20. PubMed ID: 20627155
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Crystal structures of human DNA polymerase beta complexed with DNA: implications for catalytic mechanism, processivity, and fidelity.
    Pelletier H; Sawaya MR; Wolfle W; Wilson SH; Kraut J
    Biochemistry; 1996 Oct; 35(39):12742-61. PubMed ID: 8841118
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Time-resolved fluorescence methods for analysis of DNA-protein interactions.
    Millar DP
    Methods Enzymol; 2000; 323():442-59. PubMed ID: 10944763
    [No Abstract]   [Full Text] [Related]  

  • 30. Measuring Nanometer Distances Between Fluorescent Labels Step-by-Step.
    Früh SM; Schoen I
    Methods Mol Biol; 2017; 1663():189-203. PubMed ID: 28924669
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Monitoring dynamic binding of chromatin proteins in vivo by single-molecule tracking.
    Mazza D; Ganguly S; McNally JG
    Methods Mol Biol; 2013; 1042():117-37. PubMed ID: 23980004
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tracking single particles for hours via continuous DNA-mediated fluorophore exchange.
    Stehr F; Stein J; Bauer J; Niederauer C; Jungmann R; Ganzinger K; Schwille P
    Nat Commun; 2021 Jul; 12(1):4432. PubMed ID: 34290254
    [TBL] [Abstract][Full Text] [Related]  

  • 33. DNA substrate preparation for atomic force microscopy studies of protein-DNA interactions.
    Buechner CN; Tessmer I
    J Mol Recognit; 2013 Dec; 26(12):605-17. PubMed ID: 24277605
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Single-molecule microscopy reveals new insights into nucleotide selection by DNA polymerase I.
    Markiewicz RP; Vrtis KB; Rueda D; Romano LJ
    Nucleic Acids Res; 2012 Sep; 40(16):7975-84. PubMed ID: 22669904
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The large fragment of Escherichia coli DNA polymerase I can synthesize DNA exclusively from fluorescently labeled nucleotides.
    Brakmann S; Nieckchen P
    Chembiochem; 2001 Oct; 2(10):773-7. PubMed ID: 11948861
    [No Abstract]   [Full Text] [Related]  

  • 36. In vivo single-molecule imaging of bacterial DNA replication, transcription, and repair.
    Stracy M; Uphoff S; Garza de Leon F; Kapanidis AN
    FEBS Lett; 2014 Oct; 588(19):3585-94. PubMed ID: 24859634
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Large domain movements upon UvrD dimerization and helicase activation.
    Nguyen B; Ordabayev Y; Sokoloski JE; Weiland E; Lohman TM
    Proc Natl Acad Sci U S A; 2017 Nov; 114(46):12178-12183. PubMed ID: 29087333
    [No Abstract]   [Full Text] [Related]  

  • 38. FRET-enhanced photostability allows improved single-molecule tracking of proteins and protein complexes in live mammalian cells.
    Basu S; Needham LM; Lando D; Taylor EJR; Wohlfahrt KJ; Shah D; Boucher W; Tan YL; Bates LE; Tkachenko O; Cramard J; Lagerholm BC; Eggeling C; Hendrich B; Klenerman D; Lee SF; Laue ED
    Nat Commun; 2018 Jun; 9(1):2520. PubMed ID: 29955052
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optical tweezers analysis of DNA-protein complexes.
    Heller I; Hoekstra TP; King GA; Peterman EJ; Wuite GJ
    Chem Rev; 2014 Mar; 114(6):3087-119. PubMed ID: 24443844
    [No Abstract]   [Full Text] [Related]  

  • 40. Single-molecule evaluation of fluorescent protein photoactivation efficiency using an in vivo nanotemplate.
    Durisic N; Laparra-Cuervo L; Sandoval-Álvarez A; Borbely JS; Lakadamyali M
    Nat Methods; 2014 Feb; 11(2):156-62. PubMed ID: 24390439
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.