These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 24638271)

  • 1. ClC-1 and ClC-2 form hetero-dimeric channels with novel protopore functions.
    Stölting G; Fischer M; Fahlke C
    Pflugers Arch; 2014 Dec; 466(12):2191-204. PubMed ID: 24638271
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gating of human ClC-2 chloride channels and regulation by carboxy-terminal domains.
    Garcia-Olivares J; Alekov A; Boroumand MR; Begemann B; Hidalgo P; Fahlke C
    J Physiol; 2008 Nov; 586(22):5325-36. PubMed ID: 18801843
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Barttin activates ClC-K channel function by modulating gating.
    Fischer M; Janssen AG; Fahlke C
    J Am Soc Nephrol; 2010 Aug; 21(8):1281-9. PubMed ID: 20538786
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Independent gating of single pores in CLC-0 chloride channels.
    Ludewig U; Pusch M; Jentsch TJ
    Biophys J; 1997 Aug; 73(2):789-97. PubMed ID: 9251795
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of block of single protopores of the Torpedo chloride channel ClC-0 by 2-(p-chlorophenoxy)butyric acid (CPB).
    Pusch M; Accardi A; Liantonio A; Ferrera L; De Luca A; Camerino DC; Conti F
    J Gen Physiol; 2001 Jul; 118(1):45-62. PubMed ID: 11432801
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The voltage-dependent ClC-2 chloride channel has a dual gating mechanism.
    Zúñiga L; Niemeyer MI; Varela D; Catalán M; Cid LP; Sepúlveda FV
    J Physiol; 2004 Mar; 555(Pt 3):671-82. PubMed ID: 14724195
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of ClC-2 gating by intracellular ATP.
    Stölting G; Teodorescu G; Begemann B; Schubert J; Nabbout R; Toliat MR; Sander T; Nürnberg P; Lerche H; Fahlke C
    Pflugers Arch; 2013 Oct; 465(10):1423-37. PubMed ID: 23632988
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Common gating of both CLC transporter subunits underlies voltage-dependent activation of the 2Cl-/1H+ exchanger ClC-7/Ostm1.
    Ludwig CF; Ullrich F; Leisle L; Stauber T; Jentsch TJ
    J Biol Chem; 2013 Oct; 288(40):28611-9. PubMed ID: 23983121
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removal of gating in voltage-dependent ClC-2 chloride channel by point mutations affecting the pore and C-terminus CBS-2 domain.
    Yusef YR; Zúñiga L; Catalán M; Niemeyer MI; Cid LP; Sepúlveda FV
    J Physiol; 2006 Apr; 572(Pt 1):173-81. PubMed ID: 16469788
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fast and slow gating relaxations in the muscle chloride channel CLC-1.
    Accardi A; Pusch M
    J Gen Physiol; 2000 Sep; 116(3):433-44. PubMed ID: 10962018
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Disease-causing mutations C277R and C277Y modify gating of human ClC-1 chloride channels in myotonia congenita.
    Weinberger S; Wojciechowski D; Sternberg D; Lehmann-Horn F; Jurkat-Rott K; Becher T; Begemann B; Fahlke C; Fischer M
    J Physiol; 2012 Aug; 590(15):3449-64. PubMed ID: 22641783
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative analysis of the voltage-dependent gating of mouse parotid ClC-2 chloride channel.
    de Santiago JA; Nehrke K; Arreola J
    J Gen Physiol; 2005 Dec; 126(6):591-603. PubMed ID: 16286506
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of a protein region involved in permeation and gating of the voltage-gated Torpedo chloride channel ClC-0.
    Ludewig U; Jentsch TJ; Pusch M
    J Physiol; 1997 Feb; 498 ( Pt 3)(Pt 3):691-702. PubMed ID: 9051580
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Permeant anions contribute to voltage dependence of ClC-2 chloride channel by interacting with the protopore gate.
    Sánchez-Rodríguez JE; De Santiago-Castillo JA; Arreola J
    J Physiol; 2010 Jul; 588(Pt 14):2545-56. PubMed ID: 20498235
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chloride dependence of hyperpolarization-activated chloride channel gates.
    Pusch M; Jordt SE; Stein V; Jentsch TJ
    J Physiol; 1999 Mar; 515 ( Pt 2)(Pt 2):341-53. PubMed ID: 10050002
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Drastic reduction of the slow gate of human muscle chloride channel (ClC-1) by mutation C277S.
    Accardi A; Ferrera L; Pusch M
    J Physiol; 2001 Aug; 534(Pt 3):745-52. PubMed ID: 11483705
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of the carboxyl terminus in ClC chloride channel function.
    Hebeisen S; Biela A; Giese B; Müller-Newen G; Hidalgo P; Fahlke C
    J Biol Chem; 2004 Mar; 279(13):13140-7. PubMed ID: 14718533
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proton-dependent inhibition, inverted voltage activation, and slow gating of CLC-0 Chloride Channel.
    Kwon HC; Yu Y; Fairclough RH; Chen TY
    PLoS One; 2020; 15(12):e0240704. PubMed ID: 33362212
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gating competence of constitutively open CLC-0 mutants revealed by the interaction with a small organic Inhibitor.
    Traverso S; Elia L; Pusch M
    J Gen Physiol; 2003 Sep; 122(3):295-306. PubMed ID: 12913089
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The muscle chloride channel ClC-1 has a double-barreled appearance that is differentially affected in dominant and recessive myotonia.
    Saviane C; Conti F; Pusch M
    J Gen Physiol; 1999 Mar; 113(3):457-68. PubMed ID: 10051520
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.