BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 24638833)

  • 1. Assessment of volatile organic compound removal by indoor plants--a novel experimental setup.
    Dela Cruz M; Müller R; Svensmark B; Pedersen JS; Christensen JH
    Environ Sci Pollut Res Int; 2014; 21(13):7838-46. PubMed ID: 24638833
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removal of volatile gasoline compounds by indoor potted plants studied by pixel-based fingerprinting analysis.
    Dela Cruz M; Tomasi G; Müller R; Christensen JH
    Chemosphere; 2019 Apr; 221():226-234. PubMed ID: 30640005
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Can ornamental potted plants remove volatile organic compounds from indoor air? A review.
    Dela Cruz M; Christensen JH; Thomsen JD; Müller R
    Environ Sci Pollut Res Int; 2014 Dec; 21(24):13909-28. PubMed ID: 25056742
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of the treatability of the primary indoor volatile organic compounds on activated carbon fiber cloths at typical indoor concentrations.
    Yao M; Zhang Q; Hand DW; Perram DL; Taylor R
    J Air Waste Manag Assoc; 2009 Jul; 59(7):882-90. PubMed ID: 19645272
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative evaluation of bacterial and fungal removal of indoor and industrial polluted air using suspended and packed bed bioreactors.
    Cantera S; López M; Muñoz R; Lebrero R
    Chemosphere; 2022 Dec; 308(Pt 2):136412. PubMed ID: 36108761
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Volatile organic compound (VOC) adsorption on material: influence of gas phase concentration, relative humidity and VOC type.
    Huang H; Haghighat F; Blondeau P
    Indoor Air; 2006 Jun; 16(3):236-47. PubMed ID: 16683942
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of ultraviolet light-emitting diode photocatalysis to remove volatile organic compounds from indoor air.
    Sharmin R; Ray MB
    J Air Waste Manag Assoc; 2012 Sep; 62(9):1032-9. PubMed ID: 23019817
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Visualization and localization of bromotoluene distribution in Hedera helix using NanoSIMS.
    Tartivel R; Tatin R; Delhaye T; Maupas A; Gendron A; Gautier S; Lavastre O
    Chemosphere; 2012 Oct; 89(7):805-9. PubMed ID: 22633077
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new method for the rapid determination of volatile organic compound breakthrough times for a sorbent at concentrations relevant to indoor air quality.
    Scahill J; Wolfrum EJ; Michener WE; Bergmann M; Blake DM; Watt AS
    J Air Waste Manag Assoc; 2004 Jan; 54(1):105-10. PubMed ID: 14871018
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Air exchange rates and migration of VOCs in basements and residences.
    Du L; Batterman S; Godwin C; Rowe Z; Chin JY
    Indoor Air; 2015 Dec; 25(6):598-609. PubMed ID: 25601281
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterizing the partitioning behavior of formaldehyde, benzene and toluene on indoor fabrics: Effects of temperature and humidity.
    Zhou X; Dong X; Ma R; Wang X; Wang F
    J Hazard Mater; 2021 Aug; 416():125827. PubMed ID: 33878652
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Indoor air pollution of volatile organic compounds: indoor/outdoor concentrations, sources and exposures].
    Chikara H; Iwamoto S; Yoshimura T
    Nihon Eiseigaku Zasshi; 2009 May; 64(3):683-8. PubMed ID: 19502764
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of relative humidity on VOC concentrations in indoor air.
    Markowicz P; Larsson L
    Environ Sci Pollut Res Int; 2015 Apr; 22(8):5772-9. PubMed ID: 25345920
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phytoremediation of VOCs from indoor air by ornamental potted plants: A pilot study using a palm species under the controlled environment.
    Teiri H; Pourzamani H; Hajizadeh Y
    Chemosphere; 2018 Apr; 197():375-381. PubMed ID: 29407808
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Removal of a complex VOC mixture by potted plants-effects on soil microorganisms.
    Dela Cruz M; Svenningsen NB; Nybroe O; Müller R; Christensen JH
    Environ Sci Pollut Res Int; 2023 Apr; 30(19):55372-55381. PubMed ID: 36890406
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Volatile organic compounds (VOCs) emitted from furniture and electrical appliances].
    Tanaka-Kagawa T; Jinno H; Furukawa Y; Nishimura T
    Kokuritsu Iyakuhin Shokuhin Eisei Kenkyusho Hokoku; 2010; (128):71-7. PubMed ID: 21381398
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of filtration efficiency and physiological responses of selected plant species to indoor air pollutants (toluene and 2-ethylhexanol) under chamber conditions.
    Hörmann V; Brenske KR; Ulrichs C
    Environ Sci Pollut Res Int; 2018 Jan; 25(1):447-458. PubMed ID: 29043589
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potted plants do not improve indoor air quality: a review and analysis of reported VOC removal efficiencies.
    Cummings BE; Waring MS
    J Expo Sci Environ Epidemiol; 2020 Mar; 30(2):253-261. PubMed ID: 31695112
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Health risk assessment of VOC emissions in laboratory rooms via a modeling approach.
    Davardoost F; Kahforoushan D
    Environ Sci Pollut Res Int; 2018 Jun; 25(18):17890-17900. PubMed ID: 29679276
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Indoor occurrence and health risk of formaldehyde, toluene, xylene and total volatile organic compounds derived from an extensive monitoring campaign in Harbin, a megacity of China.
    Zhang ZF; Zhang X; Zhang XM; Liu LY; Li YF; Sun W
    Chemosphere; 2020 Jul; 250():126324. PubMed ID: 32135441
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.