These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 24638838)
1. Phytoaccumulation potentials of two biotechnologically propagated ecotypes of Arundo donax in copper-contaminated synthetic wastewater. Elhawat N; Alshaal T; Domokos-Szabolcsy É; El-Ramady H; Márton L; Czakó M; Kátai J; Balogh P; Sztrik A; Molnár M; Popp J; Fári MG Environ Sci Pollut Res Int; 2014 Jun; 21(12):7773-80. PubMed ID: 24638838 [TBL] [Abstract][Full Text] [Related]
2. Copper Uptake Efficiency and Its Distribution Within Bioenergy Grass Giant Reed. Elhawat N; Alshaal T; Domokos-Szabolcsy É; El-Ramady H; Antal G; Márton L; Czakó M; Balogh P; Fári M Bull Environ Contam Toxicol; 2015 Oct; 95(4):452-8. PubMed ID: 26215460 [TBL] [Abstract][Full Text] [Related]
3. Selenate tolerance and selenium hyperaccumulation in the monocot giant reed (Arundo donax), a biomass crop plant with phytoremediation potential. Domokos-Szabolcsy É; Fári M; Márton L; Czakó M; Veres S; Elhawat N; Antal G; El-Ramady H; Zsíros O; Garab G; Alshaal T Environ Sci Pollut Res Int; 2018 Nov; 25(31):31368-31380. PubMed ID: 30196460 [TBL] [Abstract][Full Text] [Related]
4. Phytoremediation potential of Arundo donax in arsenic-contaminated synthetic wastewater. Mirza N; Mahmood Q; Pervez A; Ahmad R; Farooq R; Shah MM; Azim MR Bioresour Technol; 2010 Aug; 101(15):5815-9. PubMed ID: 20363125 [TBL] [Abstract][Full Text] [Related]
5. Transcriptional, metabolic and DNA methylation changes underpinning the response of Arundo donax ecotypes to NaCl excess. Docimo T; De Stefano R; De Palma M; Cappetta E; Villano C; Aversano R; Tucci M Planta; 2019 Dec; 251(1):34. PubMed ID: 31848729 [TBL] [Abstract][Full Text] [Related]
6. Insights on phytoremediation of chromium from tannery wastewater contaminated soil. Gebretekle BG; Teklu Gebretsadik T; Mekonnen KN; Asgedom AG Int J Phytoremediation; 2024; 26(12):1923-1931. PubMed ID: 38900152 [TBL] [Abstract][Full Text] [Related]
7. Heavy metals removal from industrial wastewater of Biskra (Algeria) by Arundo donax and Phragmites australis. Badache S; Seghairi N Environ Monit Assess; 2024 Jul; 196(8):703. PubMed ID: 38967833 [TBL] [Abstract][Full Text] [Related]
8. Evaluating the potential use of Cu-contaminated soils for giant reed (Arundo donax, L.) cultivation as a biomass crop. Coppa E; Astolfi S; Beni C; Carnevale M; Colarossi D; Gallucci F; Santangelo E Environ Sci Pollut Res Int; 2020 Mar; 27(8):8662-8672. PubMed ID: 31907812 [TBL] [Abstract][Full Text] [Related]
9. [Tolerance of Arundo donax to heavy metals]. Han Z; Hu Z Ying Yong Sheng Tai Xue Bao; 2005 Jan; 16(1):161-5. PubMed ID: 15852979 [TBL] [Abstract][Full Text] [Related]
10. Phenotypic differences determine drought stress responses in ecotypes of Arundo donax adapted to different environments. Ahrar M; Doneva D; Tattini M; Brunetti C; Gori A; Rodeghiero M; Wohlfahrt G; Biasioli F; Varotto C; Loreto F; Velikova V J Exp Bot; 2017 Apr; 68(9):2439-2451. PubMed ID: 28449129 [TBL] [Abstract][Full Text] [Related]
11. Cadmium phytoremediation by Arundo donax L. from contaminated soil and water. Sabeen M; Mahmood Q; Irshad M; Fareed I; Khan A; Ullah F; Hussain J; Hayat Y; Tabassum S Biomed Res Int; 2013; 2013():324830. PubMed ID: 24459667 [TBL] [Abstract][Full Text] [Related]
12. Multiple mechanisms of heavy metal tolerance are differentially expressed in ecotypes of Artemisia fragrans. Alirzayeva E; Neumann G; Horst W; Allahverdiyeva Y; Specht A; Alizade V Environ Pollut; 2017 Jan; 220(Pt B):1024-1035. PubMed ID: 27890587 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of the phytoremediation potential of Arundo donax L. for nickel-contaminated soil. Atma W; Larouci M; Meddah B; Benabdeli K; Sonnet P Int J Phytoremediation; 2017 Apr; 19(4):377-386. PubMed ID: 27592714 [TBL] [Abstract][Full Text] [Related]
14. Characterization of differentially expressed genes to Cu stress in Brassica nigra by Arabidopsis genome arrays. Cevher-Keskin B; Yıldızhan Y; Yüksel B; Dalyan E; Memon AR Environ Sci Pollut Res Int; 2019 Jan; 26(1):299-311. PubMed ID: 30397750 [TBL] [Abstract][Full Text] [Related]
15. Arundo donax L., a candidate for phytomanaging water and soils contaminated by trace elements and producing plant-based feedstock. A review. Nsanganwimana F; Marchand L; Douay F; Mench M Int J Phytoremediation; 2014; 16(7-12):982-1017. PubMed ID: 24933898 [TBL] [Abstract][Full Text] [Related]
16. Phytoremediation potential of Arundo donax (Giant Reed) in contaminated soil by heavy metals. Cristaldi A; Oliveri Conti G; Cosentino SL; Mauromicale G; Copat C; Grasso A; Zuccarello P; Fiore M; Restuccia C; Ferrante M Environ Res; 2020 Jun; 185():109427. PubMed ID: 32247150 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of copper bioaccumulation and translocation in Jatropha curcas grown in a contaminated soil. Ahmadpour P; Soleimani M; Ahmadpour F; Abdu A Int J Phytoremediation; 2014; 16(5):454-68. PubMed ID: 24912228 [TBL] [Abstract][Full Text] [Related]
18. Assessing Arundo donax L. in vitro-tolerance for phytoremediation purposes. Cano-Ruiz J; Ruiz Galea M; Amorós MC; Alonso J; Mauri PV; Lobo MC Chemosphere; 2020 Aug; 252():126576. PubMed ID: 32443267 [TBL] [Abstract][Full Text] [Related]
19. The effect of summer drought on the yield of Arundo donax is reduced by the retention of photosynthetic capacity and leaf growth later in the growing season. Haworth M; Marino G; Riggi E; Avola G; Brunetti C; Scordia D; Testa G; Thiago Gaudio Gomes M; Loreto F; Luciano Cosentino S; Centritto M Ann Bot; 2019 Oct; 124(4):567-580. PubMed ID: 30566593 [TBL] [Abstract][Full Text] [Related]
20. Copper tolerance, uptake and accumulation by Phragmites australis. Ye ZH; Baker AJ; Wong MH; Willis AJ Chemosphere; 2003 Feb; 50(6):795-800. PubMed ID: 12688493 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]