These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 24638882)

  • 21. Modulation of spinal excitability following neuromuscular electrical stimulation superimposed to voluntary contraction.
    Borzuola R; Labanca L; Macaluso A; Laudani L
    Eur J Appl Physiol; 2020 Sep; 120(9):2105-2113. PubMed ID: 32676751
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Central Contribution to Electrically Induced Fatigue depends on Stimulation Frequency.
    Grosprêtre S; Gueugneau N; Martin A; Lepers R
    Med Sci Sports Exerc; 2017 Aug; 49(8):1530-1540. PubMed ID: 28291023
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Soleus- and gastrocnemii-evoked V-wave responses increase after neuromuscular electrical stimulation training.
    Gondin J; Duclay J; Martin A
    J Neurophysiol; 2006 Jun; 95(6):3328-35. PubMed ID: 16481458
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Assessment of the H-reflex at two contraction levels before and after fatigue.
    Stutzig N; Siebert T
    Scand J Med Sci Sports; 2017 Apr; 27(4):399-407. PubMed ID: 26887575
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spinal mechanisms contribute to differences in the time to failure of submaximal fatiguing contractions performed with different loads.
    Klass M; Lévénez M; Enoka RM; Duchateau J
    J Neurophysiol; 2008 Mar; 99(3):1096-104. PubMed ID: 18184884
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Neural and muscular mechanisms of electrically induced fatigue in patients with spinal cord injury.
    Papaiordanidou M; Varray A; Fattal C; Guiraud D
    Spinal Cord; 2014 Mar; 52(3):246-50. PubMed ID: 24445970
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Changes in H-reflex and V-waves following spinal manipulation.
    Niazi IK; Türker KS; Flavel S; Kinget M; Duehr J; Haavik H
    Exp Brain Res; 2015 Apr; 233(4):1165-73. PubMed ID: 25579661
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Contribution of muscle afferents to prolonged flexion withdrawal reflexes in human spinal cord injury.
    Hornby TG; Tysseling-Mattiace VM; Benz EN; Schmit BD
    J Neurophysiol; 2004 Dec; 92(6):3375-84. PubMed ID: 15254071
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fatigue modulates synchronous but not asynchronous soleus activation during stimulation of paralyzed muscle.
    Shields RK; Dudley-Javoroski S
    Clin Neurophysiol; 2013 Sep; 124(9):1853-60. PubMed ID: 23673062
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Facilitation of corticospinal connections in able-bodied people and people with central nervous system disorders using eight interventions.
    Stein RB; Everaert DG; Roy FD; Chong S; Soleimani M
    J Clin Neurophysiol; 2013 Feb; 30(1):66-78. PubMed ID: 23377445
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Neural drive preservation after detraining following neuromuscular electrical stimulation training.
    Gondin J; Duclay J; Martin A
    Neurosci Lett; 2006 Dec; 409(3):210-4. PubMed ID: 17027149
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spinal reflex plasticity during maximal dynamic contractions after eccentric training.
    Duclay J; Martin A; Robbe A; Pousson M
    Med Sci Sports Exerc; 2008 Apr; 40(4):722-34. PubMed ID: 18317371
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Physiological recruitment of motor units by high-frequency electrical stimulation of afferent pathways.
    Dideriksen JL; Muceli S; Dosen S; Laine CM; Farina D
    J Appl Physiol (1985); 2015 Feb; 118(3):365-76. PubMed ID: 25477350
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of electrical stimulation parameters on fatigue in skeletal muscle.
    Gorgey AS; Black CD; Elder CP; Dudley GA
    J Orthop Sports Phys Ther; 2009 Sep; 39(9):684-92. PubMed ID: 19721215
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The characterization of contractile and myoelectric activities in paralyzed tibialis anterior post electrically elicited muscle fatigue.
    Yu NY; Chang SH
    Artif Organs; 2010 Apr; 34(4):E117-21. PubMed ID: 20420602
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Neuronal function in chronic spinal cord injury: divergence between locomotor and flexion- and H-reflex activity.
    Müller R; Dietz V
    Clin Neurophysiol; 2006 Jul; 117(7):1499-507. PubMed ID: 16690351
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Test-retest reliability of wide-pulse high-frequency neuromuscular electrical stimulation evoked force.
    Neyroud D; Grosprêtre S; Gondin J; Kayser B; Place N
    Muscle Nerve; 2018 Jan; 57(1):E70-E77. PubMed ID: 28722822
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Do additional inputs change maximal voluntary motor unit firing rates after spinal cord injury?
    Zijdewind I; Gant K; Bakels R; Thomas CK
    Neurorehabil Neural Repair; 2012 Jan; 26(1):58-67. PubMed ID: 21903974
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Limiting mechanisms of force production after repetitive dynamic contractions in human triceps surae.
    Klass M; Guissard N; Duchateau J
    J Appl Physiol (1985); 2004 Apr; 96(4):1516-21; discussion. PubMed ID: 14607852
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Utilizing Physiological Principles of Motor Unit Recruitment to Reduce Fatigability of Electrically-Evoked Contractions: A Narrative Review.
    Barss TS; Ainsley EN; Claveria-Gonzalez FC; Luu MJ; Miller DJ; Wiest MJ; Collins DF
    Arch Phys Med Rehabil; 2018 Apr; 99(4):779-791. PubMed ID: 28935232
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.