These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 24638897)

  • 1. The eyes of lanternfishes (Myctophidae, Teleostei): novel ocular specializations for vision in dim light.
    de Busserolles F; Marshall NJ; Collin SP
    J Comp Neurol; 2014 May; 522(7):1618-40. PubMed ID: 24638897
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spectral tuning in the eyes of deep-sea lanternfishes (Myctophidae): a novel sexually dimorphic intra-ocular filter.
    de Busserolles F; Hart NS; Hunt DM; Davies WI; Marshall NJ; Clarke MW; Hahne D; Collin SP
    Brain Behav Evol; 2015; 85(2):77-93. PubMed ID: 25766394
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Seven retinal specializations in the tubular eye of the deep-sea pearleye, Scopelarchus michaelsarsi: a case study in visual optimization.
    Collin SP; Hoskins RV; Partridge JC
    Brain Behav Evol; 1998; 51(6):291-314. PubMed ID: 9623907
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Grouped retinae and tapetal cups in some Teleostian fish: occurrence, structure, and function.
    Francke M; Kreysing M; Mack A; Engelmann J; Karl A; Makarov F; Guck J; Kolle M; Wolburg H; Pusch R; von der Emde G; Schuster S; Wagner HJ; Reichenbach A
    Prog Retin Eye Res; 2014 Jan; 38():43-69. PubMed ID: 24157316
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Seeing in the deep-sea: visual adaptations in lanternfishes.
    de Busserolles F; Marshall NJ
    Philos Trans R Soc Lond B Biol Sci; 2017 Apr; 372(1717):. PubMed ID: 28193815
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The visual system of the Florida garfish, Lepisosteus platyrhincus (Ginglymodi). I. Retina.
    Collin SP; Collin HB
    Brain Behav Evol; 1993; 42(2):77-97. PubMed ID: 8353723
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Eye-size variability in deep-sea lanternfishes (Myctophidae): an ecological and phylogenetic study.
    de Busserolles F; Fitzpatrick JL; Paxton JR; Marshall NJ; Collin SP
    PLoS One; 2013; 8(3):e58519. PubMed ID: 23472203
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The structure of anchovy outer retinae (Engraulididae, Clupeiformes) - a comparative light- and electron-microscopic study using museum-stored material.
    Hess M; Melzer RR; Eser R; Smola U
    J Morphol; 2006 Nov; 267(11):1356-80. PubMed ID: 17051549
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The eye of the venomous marine teleost Trachinus vipera with special reference to the structure and ultrastructure of visual cells and pigment epithelium.
    Kunz YW; Ni Shuilleabhain M; Callaghan E
    Exp Biol; 1985; 43(3):161-78. PubMed ID: 3846536
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tubular eyes of deep-sea fishes: a comparative study of retinal topography.
    Collin SP; Hoskins RV; Partridge JC
    Brain Behav Evol; 1997; 50(6):335-57. PubMed ID: 9406644
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolution and ecology of retinal photoreception in early vertebrates.
    Collin SP
    Brain Behav Evol; 2010; 75(3):174-85. PubMed ID: 20733293
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolutionary attempts at 4 eyes in vertebrates.
    Schwab IR; Ho V; Roth A; Blankenship TN; Fitzgerald PG
    Trans Am Ophthalmol Soc; 2001; 99():145-56; discussion 156-7. PubMed ID: 11797302
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Topography of ganglion cells and photoreceptors in the sheep retina.
    Shinozaki A; Hosaka Y; Imagawa T; Uehara M
    J Comp Neurol; 2010 Jun; 518(12):2305-15. PubMed ID: 20437529
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Early development of eye and retina in lanternfish larvae.
    Bozzano A; Pankhurst PM; Sabatés A
    Vis Neurosci; 2007; 24(3):423-36. PubMed ID: 17822580
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of photoreceptor size and distribution on optical sensitivity in the eyes of lanternfishes (Myctophidae).
    de Busserolles F; Fitzpatrick JL; Marshall NJ; Collin SP
    PLoS One; 2014; 9(6):e99957. PubMed ID: 24927016
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modifications of the falciform process in the eye of beloniformes (Teleostei: Atherinomorpha): evolution of a curtain-like septum in the eye.
    Reckel F; Melzer RR
    J Morphol; 2004 Apr; 260(1):13-20. PubMed ID: 15052593
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Retinal ganglion cell distribution and spatial resolving power in deep-sea lanternfishes (Myctophidae).
    de Busserolles F; Marshall NJ; Collin SP
    Brain Behav Evol; 2014; 84(4):262-76. PubMed ID: 25401391
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Independent evolution of visual and electrosensory specializations in different lineages of mormyrid electric fishes.
    Stevens JA; Sukhum KV; Carlson BA
    Brain Behav Evol; 2013; 82(3):185-98. PubMed ID: 24192131
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vision in elasmobranchs and their relatives: 21st century advances.
    Lisney TJ; Theiss SM; Collin SP; Hart NS
    J Fish Biol; 2012 Apr; 80(5):2024-54. PubMed ID: 22497415
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interspecific visual adaptations among wobbegong sharks (Orectolobidae).
    Theiss SM; Collin SP; Hart NS
    Brain Behav Evol; 2010; 76(3-4):248-60. PubMed ID: 21051877
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.