These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 24638897)

  • 61. Evolution of eye size and shape in primates.
    Ross CF; Kirk EC
    J Hum Evol; 2007 Mar; 52(3):294-313. PubMed ID: 17156820
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Eye growth in sharks: ecological implications for changes in retinal topography and visual resolution.
    Litherland L; Collin SP; Fritsches KA
    Vis Neurosci; 2009; 26(4):397-409. PubMed ID: 19698193
    [TBL] [Abstract][Full Text] [Related]  

  • 63. The tapetum lucidum in the eyes of cusk-eels (Ophidiidae).
    Nicol JA; Zyznar ES; Thurston EL; Wang RT
    Can J Zool; 1975 Aug; 53(8):1063-79. PubMed ID: 1156953
    [No Abstract]   [Full Text] [Related]  

  • 64. Photoreceptor projection and termination pattern in the lamina of gonodactyloid stomatopods (mantis shrimp).
    Kleinlogel S; Marshall NJ
    Cell Tissue Res; 2005 Aug; 321(2):273-84. PubMed ID: 15947970
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Pigment epithelial and retinal phenotypes in the vitiligo mivit, mutant mouse.
    Sidman RL; Kosaras B; Tang M
    Invest Ophthalmol Vis Sci; 1996 May; 37(6):1097-115. PubMed ID: 8631625
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Autosomal dominant retinitis pigmentosa caused by the threonine-17-methionine rhodopsin mutation: retinal histopathology and immunocytochemistry.
    Li ZY; Jacobson SG; Milam AH
    Exp Eye Res; 1994 Apr; 58(4):397-408. PubMed ID: 7925677
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Retinal anatomy of the New Zealand kiwi: structural traits consistent with their nocturnal behavior.
    Corfield JR; Parsons S; Harimoto Y; Acosta ML
    Anat Rec (Hoboken); 2015 Apr; 298(4):771-9. PubMed ID: 25346176
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Eye shape and retinal topography in owls (Aves: Strigiformes).
    Lisney TJ; Iwaniuk AN; Bandet MV; Wylie DR
    Brain Behav Evol; 2012; 79(4):218-36. PubMed ID: 22722085
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Nocturnality constrains morphological and functional diversity in the eyes of reef fishes.
    Schmitz L; Wainwright PC
    BMC Evol Biol; 2011 Nov; 11():338. PubMed ID: 22098687
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Unique photoreceptor arrangements in a fish with polarized light discrimination.
    Novales Flamarique I
    J Comp Neurol; 2011 Mar; 519(4):714-37. PubMed ID: 21246551
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Photoreceptor types, visual pigments, and topographic specializations in the retinas of hydrophiid sea snakes.
    Hart NS; Coimbra JP; Collin SP; Westhoff G
    J Comp Neurol; 2012 Apr; 520(6):1246-61. PubMed ID: 22020556
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Age-related changes in the tiger salamander retina.
    Townes-Anderson E; Colantonio A; St Jules RS
    Exp Eye Res; 1998 May; 66(5):653-67. PubMed ID: 9631666
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Retinal tapetum lucidum: a novel reflecting system in the eye of teleosts.
    Arnott HJ; Maciolek NJ; Nicol JA
    Science; 1970 Jul; 169(3944):478-80. PubMed ID: 17739009
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Brain and sense organ anatomy and histology in hemoglobinless Antarctic icefishes (Perciformes: Notothenioidei: Channichthyidae).
    Eastman JT; Lannoo MJ
    J Morphol; 2004 Apr; 260(1):117-40. PubMed ID: 15052601
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Retinal anatomy of Chorocaris chacei, a deep-sea hydrothermal vent shrimp from the Mid-Atlantic Ridge.
    Lakin RC; Jinks RN; Battelle BA; Herzog ED; Kass L; Renninger GH; Chamberlain SC
    J Comp Neurol; 1997 Sep; 385(4):503-14. PubMed ID: 9302103
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Seven-locus molecular phylogeny of Myctophiformes (Teleostei; Scopelomorpha) highlights the utility of the order for studies of deep-sea evolution.
    Denton JS
    Mol Phylogenet Evol; 2014 Jul; 76():270-92. PubMed ID: 24583290
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Adaptive visual metamorphosis in a deep-sea hydrothermal vent crab.
    Jinks RN; Markley TL; Taylor EE; Perovich G; Dittel AI; Epifanio CE; Cronin TW
    Nature; 2002 Nov; 420(6911):68-70. PubMed ID: 12422215
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Comparison of behavioural and morphological measures of visual acuity during ontogeny in a teleost fish, Forsterygion varium, tripterygiidae (Forster, 1801).
    Pankhurst PM; Pankhurst NW; Montgomery JC
    Brain Behav Evol; 1993; 42(3):178-88. PubMed ID: 8364716
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Reflecting optics in the diverticular eye of a deep-sea barreleye fish (Rhynchohyalus natalensis).
    Partridge JC; Douglas RH; Marshall NJ; Chung WS; Jordan TM; Wagner HJ
    Proc Biol Sci; 2014 May; 281(1782):20133223. PubMed ID: 24648222
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Vision in the dimmest habitats on earth.
    Warrant E
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2004 Oct; 190(10):765-89. PubMed ID: 15375626
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.