These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
210 related articles for article (PubMed ID: 24639014)
1. A joint frailty model to estimate the recurrence process and the disease-specific mortality process without needing the cause of death. Belot A; Rondeau V; Remontet L; Giorgi R; Stat Med; 2014 Aug; 33(18):3147-66. PubMed ID: 24639014 [TBL] [Abstract][Full Text] [Related]
2. A joint frailty model for survival and gap times between recurrent events. Huang X; Liu L Biometrics; 2007 Jun; 63(2):389-97. PubMed ID: 17688491 [TBL] [Abstract][Full Text] [Related]
3. General joint frailty model for recurrent event data with a dependent terminal event: Application to follicular lymphoma data. Mazroui Y; Mathoulin-Pelissier S; Soubeyran P; Rondeau V Stat Med; 2012 May; 31(11-12):1162-76. PubMed ID: 22307954 [TBL] [Abstract][Full Text] [Related]
4. Dynamic frailty models based on compound birth-death processes. Putter H; van Houwelingen HC Biostatistics; 2015 Jul; 16(3):550-64. PubMed ID: 25681608 [TBL] [Abstract][Full Text] [Related]
5. Goodness-of-fit tests for the frailty distribution in proportional hazards models with shared frailty. Geerdens C; Claeskens G; Janssen P Biostatistics; 2013 Jul; 14(3):433-46. PubMed ID: 23274285 [TBL] [Abstract][Full Text] [Related]
6. Shared frailty models for recurrent events and a terminal event. Liu L; Wolfe RA; Huang X Biometrics; 2004 Sep; 60(3):747-56. PubMed ID: 15339298 [TBL] [Abstract][Full Text] [Related]
7. Joint frailty models for recurring events and death using maximum penalized likelihood estimation: application on cancer events. Rondeau V; Mathoulin-Pelissier S; Jacqmin-Gadda H; Brouste V; Soubeyran P Biostatistics; 2007 Oct; 8(4):708-21. PubMed ID: 17267392 [TBL] [Abstract][Full Text] [Related]
8. Competing risk models to estimate the excess mortality and the first recurrent-event hazards. Belot A; Remontet L; Launoy G; Jooste V; Giorgi R BMC Med Res Methodol; 2011 May; 11():78. PubMed ID: 21612632 [TBL] [Abstract][Full Text] [Related]
9. A flexible class of generalized joint frailty models for the analysis of survival endpoints. Chauvet J; Rondeau V Stat Med; 2023 Apr; 42(8):1233-1262. PubMed ID: 36775273 [TBL] [Abstract][Full Text] [Related]
10. Estimating net survival: the importance of allowing for informative censoring. Danieli C; Remontet L; Bossard N; Roche L; Belot A Stat Med; 2012 Apr; 31(8):775-86. PubMed ID: 22281942 [TBL] [Abstract][Full Text] [Related]
11. The partly Aalen's model for recurrent event data with a dependent terminal event. Chen CM; Shen PS; Chuang YW Stat Med; 2016 Jan; 35(2):268-81. PubMed ID: 26265213 [TBL] [Abstract][Full Text] [Related]
12. Time-varying coefficients in a multivariate frailty model: Application to breast cancer recurrences of several types and death. Mazroui Y; Mauguen A; Mathoulin-Pélissier S; MacGrogan G; Brouste V; Rondeau V Lifetime Data Anal; 2016 Apr; 22(2):191-215. PubMed ID: 25944225 [TBL] [Abstract][Full Text] [Related]
13. A shared frailty model for case-cohort samples: parent and offspring relations in an adoption study. Petersen L; Sørensen TI; Andersen PK Stat Med; 2010 Mar; 29(7-8):924-31. PubMed ID: 20213722 [TBL] [Abstract][Full Text] [Related]
14. Smoothing spline ANOVA frailty model for recurrent event data. Du P; Jiang Y; Wang Y Biometrics; 2011 Dec; 67(4):1330-9. PubMed ID: 21457192 [TBL] [Abstract][Full Text] [Related]
15. Multivariate frailty models for two types of recurrent events with a dependent terminal event: application to breast cancer data. Mazroui Y; Mathoulin-Pélissier S; Macgrogan G; Brouste V; Rondeau V Biom J; 2013 Nov; 55(6):866-84. PubMed ID: 23929494 [TBL] [Abstract][Full Text] [Related]
16. Semiparametric analysis of correlated recurrent and terminal events. Ye Y; Kalbfleisch JD; Schaubel DE Biometrics; 2007 Mar; 63(1):78-87. PubMed ID: 17447932 [TBL] [Abstract][Full Text] [Related]
17. Bayesian semiparametric analysis of recurrent failure time data using copulas. Meyer R; Romeo JS Biom J; 2015 Nov; 57(6):982-1001. PubMed ID: 26153049 [TBL] [Abstract][Full Text] [Related]
18. Relative survival multistate Markov model. Huszti E; Abrahamowicz M; Alioum A; Binquet C; Quantin C Stat Med; 2012 Feb; 31(3):269-86. PubMed ID: 22052528 [TBL] [Abstract][Full Text] [Related]
19. Flexible modeling of competing risks in survival analysis. Belot A; Abrahamowicz M; Remontet L; Giorgi R Stat Med; 2010 Oct; 29(23):2453-68. PubMed ID: 20645282 [TBL] [Abstract][Full Text] [Related]
20. Marginal hazard ratio estimates in joint frailty models for heart failure trials. Toenges G; Jahn-Eimermacher A Biom J; 2019 Nov; 61(6):1385-1401. PubMed ID: 31206775 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]