These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 24639351)

  • 1. Regulation of experimental autoimmune encephalomyelitis by TPL-2 kinase.
    Sriskantharajah S; Gückel E; Tsakiri N; Kierdorf K; Brender C; Ben-Addi A; Veldhoen M; Tsichlis PN; Stockinger B; O'Garra A; Prinz M; Kollias G; Ley SC
    J Immunol; 2014 Apr; 192(8):3518-3529. PubMed ID: 24639351
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional and pathogenic differences of Th1 and Th17 cells in experimental autoimmune encephalomyelitis.
    Domingues HS; Mues M; Lassmann H; Wekerle H; Krishnamoorthy G
    PLoS One; 2010 Nov; 5(11):e15531. PubMed ID: 21209700
    [TBL] [Abstract][Full Text] [Related]  

  • 3. IL-7/IL-7 Receptor Signaling Differentially Affects Effector CD4+ T Cell Subsets Involved in Experimental Autoimmune Encephalomyelitis.
    Arbelaez CA; Glatigny S; Duhen R; Eberl G; Oukka M; Bettelli E
    J Immunol; 2015 Sep; 195(5):1974-83. PubMed ID: 26223651
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Grb2 Is Important for T Cell Development, Th Cell Differentiation, and Induction of Experimental Autoimmune Encephalomyelitis.
    Radtke D; Lacher SM; Szumilas N; Sandrock L; Ackermann J; Nitschke L; Zinser E
    J Immunol; 2016 Apr; 196(7):2995-3005. PubMed ID: 26921310
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SLAM-SAP signaling promotes differentiation of IL-17-producing T cells and progression of experimental autoimmune encephalomyelitis.
    Huang YH; Tsai K; Ma C; Vallance BA; Priatel JJ; Tan R
    J Immunol; 2014 Dec; 193(12):5841-53. PubMed ID: 25362182
    [TBL] [Abstract][Full Text] [Related]  

  • 6. IDO upregulates regulatory T cells via tryptophan catabolite and suppresses encephalitogenic T cell responses in experimental autoimmune encephalomyelitis.
    Yan Y; Zhang GX; Gran B; Fallarino F; Yu S; Li H; Cullimore ML; Rostami A; Xu H
    J Immunol; 2010 Nov; 185(10):5953-61. PubMed ID: 20944000
    [TBL] [Abstract][Full Text] [Related]  

  • 7. VPAC1 receptor (Vipr1)-deficient mice exhibit ameliorated experimental autoimmune encephalomyelitis, with specific deficits in the effector stage.
    Abad C; Jayaram B; Becquet L; Wang Y; O'Dorisio MS; Waschek JA; Tan YV
    J Neuroinflammation; 2016 Jun; 13(1):169. PubMed ID: 27357191
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of the MHC class II transactivator in class II expression and antigen presentation by astrocytes and in susceptibility to central nervous system autoimmune disease.
    Stüve O; Youssef S; Slavin AJ; King CL; Patarroyo JC; Hirschberg DL; Brickey WJ; Soos JM; Piskurich JF; Chapman HA; Zamvil SS
    J Immunol; 2002 Dec; 169(12):6720-32. PubMed ID: 12471103
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mannan-conjugated myelin peptides prime non-pathogenic Th1 and Th17 cells and ameliorate experimental autoimmune encephalomyelitis.
    Tseveleki V; Tselios T; Kanistras I; Koutsoni O; Karamita M; Vamvakas SS; Apostolopoulos V; Dotsika E; Matsoukas J; Lassmann H; Probert L
    Exp Neurol; 2015 May; 267():254-67. PubMed ID: 25447934
    [TBL] [Abstract][Full Text] [Related]  

  • 10. C-Reactive Protein Suppresses the Th17 Response Indirectly by Attenuating the Antigen Presentation Ability of Monocyte Derived Dendritic Cells in Experimental Autoimmune Encephalomyelitis.
    Shen ZY; Zheng Y; Pecsok MK; Wang K; Li W; Gong MJ; Wu F; Zhang L
    Front Immunol; 2021; 12():589200. PubMed ID: 33841391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kirenol attenuates experimental autoimmune encephalomyelitis by inhibiting differentiation of Th1 and th17 cells and inducing apoptosis of effector T cells.
    Xiao J; Yang R; Yang L; Fan X; Liu W; Deng W
    Sci Rep; 2015 Mar; 5():9022. PubMed ID: 25762107
    [TBL] [Abstract][Full Text] [Related]  

  • 12. LFA-1 Controls Th1 and Th17 Motility Behavior in the Inflamed Central Nervous System.
    Dusi S; Angiari S; Pietronigro EC; Lopez N; Angelini G; Zenaro E; Della Bianca V; Tosadori G; Paris F; Amoruso A; Carlucci T; Constantin G; Rossi B
    Front Immunol; 2019; 10():2436. PubMed ID: 31681316
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CD226 Attenuates Treg Proliferation via Akt and Erk Signaling in an EAE Model.
    Wang N; Yi H; Fang L; Jin J; Ma Q; Shen Y; Li J; Liang S; Xiong J; Li Z; Zeng H; Jiang F; Jin B; Chen L
    Front Immunol; 2020; 11():1883. PubMed ID: 32983109
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insulin-Like Growth Factors Are Key Regulators of T Helper 17 Regulatory T Cell Balance in Autoimmunity.
    DiToro D; Harbour SN; Bando JK; Benavides G; Witte S; Laufer VA; Moseley C; Singer JR; Frey B; Turner H; Bruning J; Darley-Usmar V; Gao M; Conover C; Hatton RD; Frank S; Colonna M; Weaver CT
    Immunity; 2020 Apr; 52(4):650-667.e10. PubMed ID: 32294406
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Th1, Th17, and Th9 effector cells induce experimental autoimmune encephalomyelitis with different pathological phenotypes.
    Jäger A; Dardalhon V; Sobel RA; Bettelli E; Kuchroo VK
    J Immunol; 2009 Dec; 183(11):7169-77. PubMed ID: 19890056
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carnosol Modulates Th17 Cell Differentiation and Microglial Switch in Experimental Autoimmune Encephalomyelitis.
    Li X; Zhao L; Han JJ; Zhang F; Liu S; Zhu L; Wang ZZ; Zhang GX; Zhang Y
    Front Immunol; 2018; 9():1807. PubMed ID: 30150982
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Therapeutic effect of baicalin on experimental autoimmune encephalomyelitis is mediated by SOCS3 regulatory pathway.
    Zhang Y; Li X; Ciric B; Ma CG; Gran B; Rostami A; Zhang GX
    Sci Rep; 2015 Nov; 5():17407. PubMed ID: 26616302
    [TBL] [Abstract][Full Text] [Related]  

  • 18. B cells promote induction of experimental autoimmune encephalomyelitis by facilitating reactivation of T cells in the central nervous system.
    Pierson ER; Stromnes IM; Goverman JM
    J Immunol; 2014 Feb; 192(3):929-39. PubMed ID: 24367024
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of Th1 cells and experimental autoimmune encephalomyelitis by glycogen synthase kinase-3.
    Beurel E; Kaidanovich-Beilin O; Yeh WI; Song L; Palomo V; Michalek SM; Woodgett JR; Harrington LE; Eldar-Finkelman H; Martinez A; Jope RS
    J Immunol; 2013 May; 190(10):5000-11. PubMed ID: 23606540
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tyrosine kinase 2 plays critical roles in the pathogenic CD4 T cell responses for the development of experimental autoimmune encephalomyelitis.
    Oyamada A; Ikebe H; Itsumi M; Saiwai H; Okada S; Shimoda K; Iwakura Y; Nakayama KI; Iwamoto Y; Yoshikai Y; Yamada H
    J Immunol; 2009 Dec; 183(11):7539-46. PubMed ID: 19917699
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.