These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 24639383)

  • 1. Comparing within-subject classification and regularization methods in fMRI for large and small sample sizes.
    Churchill NW; Yourganov G; Strother SC
    Hum Brain Mapp; 2014 Sep; 35(9):4499-517. PubMed ID: 24639383
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimizing preprocessing and analysis pipelines for single-subject fMRI: 2. Interactions with ICA, PCA, task contrast and inter-subject heterogeneity.
    Churchill NW; Yourganov G; Oder A; Tam F; Graham SJ; Strother SC
    PLoS One; 2012; 7(2):e31147. PubMed ID: 22383999
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pattern classification of fMRI data: applications for analysis of spatially distributed cortical networks.
    Yourganov G; Schmah T; Churchill NW; Berman MG; Grady CL; Strother SC
    Neuroimage; 2014 Aug; 96():117-32. PubMed ID: 24705202
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization of rs-fMRI Pre-processing for Enhanced Signal-Noise Separation, Test-Retest Reliability, and Group Discrimination.
    Shirer WR; Jiang H; Price CM; Ng B; Greicius MD
    Neuroimage; 2015 Aug; 117():67-79. PubMed ID: 25987368
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring predictive and reproducible modeling with the single-subject FIAC dataset.
    Chen X; Pereira F; Lee W; Strother S; Mitchell T
    Hum Brain Mapp; 2006 May; 27(5):452-61. PubMed ID: 16565951
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of finite sample size on feature selection and classification: a simulation study.
    Way TW; Sahiner B; Hadjiiski LM; Chan HP
    Med Phys; 2010 Feb; 37(2):907-20. PubMed ID: 20229900
    [TBL] [Abstract][Full Text] [Related]  

  • 7. fMRI volume classification using a 3D convolutional neural network robust to shifted and scaled neuronal activations.
    Vu H; Kim HC; Jung M; Lee JH
    Neuroimage; 2020 Dec; 223():117328. PubMed ID: 32896633
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Utilizing temporal information in fMRI decoding: classifier using kernel regression methods.
    Chu C; Mourão-Miranda J; Chiu YC; Kriegeskorte N; Tan G; Ashburner J
    Neuroimage; 2011 Sep; 58(2):560-71. PubMed ID: 21729756
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of multivariate classifiers and response normalizations for pattern-information fMRI.
    Misaki M; Kim Y; Bandettini PA; Kriegeskorte N
    Neuroimage; 2010 Oct; 53(1):103-18. PubMed ID: 20580933
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers.
    Salimi-Khorshidi G; Douaud G; Beckmann CF; Glasser MF; Griffanti L; Smith SM
    Neuroimage; 2014 Apr; 90():449-68. PubMed ID: 24389422
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decoding the encoding of functional brain networks: An fMRI classification comparison of non-negative matrix factorization (NMF), independent component analysis (ICA), and sparse coding algorithms.
    Xie J; Douglas PK; Wu YN; Brody AL; Anderson AE
    J Neurosci Methods; 2017 Apr; 282():81-94. PubMed ID: 28322859
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimizing fMRI preprocessing pipelines for block-design tasks as a function of age.
    Churchill NW; Raamana P; Spring R; Strother SC
    Neuroimage; 2017 Jul; 154():240-254. PubMed ID: 28216431
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A kernel machine-based fMRI physiological noise removal method.
    Song X; Chen NK; Gaur P
    Magn Reson Imaging; 2014 Feb; 32(2):150-62. PubMed ID: 24321306
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fast bootstrapping and permutation testing for assessing reproducibility and interpretability of multivariate fMRI decoding models.
    Conroy BR; Walz JM; Sajda P
    PLoS One; 2013; 8(11):e79271. PubMed ID: 24244465
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automatic independent component labeling for artifact removal in fMRI.
    Tohka J; Foerde K; Aron AR; Tom SM; Toga AW; Poldrack RA
    Neuroimage; 2008 Feb; 39(3):1227-45. PubMed ID: 18042495
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of fMRI data by blind separation into independent spatial components.
    McKeown MJ; Makeig S; Brown GG; Jung TP; Kindermann SS; Bell AJ; Sejnowski TJ
    Hum Brain Mapp; 1998; 6(3):160-88. PubMed ID: 9673671
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation and optimization of fMRI single-subject processing pipelines with NPAIRS and second-level CVA.
    Zhang J; Anderson JR; Liang L; Pulapura SK; Gatewood L; Rottenberg DA; Strother SC
    Magn Reson Imaging; 2009 Feb; 27(2):264-78. PubMed ID: 18849131
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Comparison of Independent Component Analysis (ICA) of fMRI and Electrical Source Imaging (ESI) in Focal Epilepsy Reveals Misclassification Using a Classifier.
    Maziero D; Sturzbecher M; Velasco TR; Rondinoni C; Castellanos AL; Carmichael DW; Salmon CE
    Brain Topogr; 2015 Nov; 28(6):813-31. PubMed ID: 25998855
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative modeling of the neural representation of objects: how semantic feature norms can account for fMRI activation.
    Chang KM; Mitchell T; Just MA
    Neuroimage; 2011 May; 56(2):716-27. PubMed ID: 20451625
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two-step paretial least square regression classifiers in brain-state decoding using functional magnetic resonance imaging.
    Long Z; Wang Y; Liu X; Yao L
    PLoS One; 2019; 14(4):e0214937. PubMed ID: 30970029
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.