These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 2463948)

  • 1. Mediolateral cell intercalation in the dorsal, axial mesoderm of Xenopus laevis.
    Keller R; Tibbetts P
    Dev Biol; 1989 Feb; 131(2):539-49. PubMed ID: 2463948
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Induction of notochord cell intercalation behavior and differentiation by progressive signals in the gastrula of Xenopus laevis.
    Domingo C; Keller R
    Development; 1995 Oct; 121(10):3311-21. PubMed ID: 7588065
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Patterns of cell motility in the organizer and dorsal mesoderm of Xenopus laevis.
    Shih J; Keller R
    Development; 1992 Dec; 116(4):915-30. PubMed ID: 1295744
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The patterning and functioning of protrusive activity during convergence and extension of the Xenopus organiser.
    Keller R; Shih J; Domingo C
    Dev Suppl; 1992; ():81-91. PubMed ID: 1299372
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The cellular basis of the convergence and extension of the Xenopus neural plate.
    Keller R; Shih J; Sater A
    Dev Dyn; 1992 Mar; 193(3):199-217. PubMed ID: 1600240
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Signals that instruct somite and myotome formation persist in Xenopus laevis early tailbud stage embryos.
    Dali L; Gustin J; Perry K; Domingo CR
    Cells Tissues Organs; 2002; 172(1):1-12. PubMed ID: 12364823
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Xenopus Gastrulation without a blastocoel roof.
    Keller R; Jansa S
    Dev Dyn; 1992 Nov; 195(3):162-76. PubMed ID: 1301081
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Superficial cells in the early gastrula of Rana pipiens contribute to mesodermal derivatives.
    Delarue M; Johnson KE; Boucaut JC
    Dev Biol; 1994 Oct; 165(2):702-15. PubMed ID: 7958431
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cell rearrangement during gastrulation of Xenopus: direct observation of cultured explants.
    Wilson P; Keller R
    Development; 1991 May; 112(1):289-300. PubMed ID: 1769334
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The epithelium of the dorsal marginal zone of Xenopus has organizer properties.
    Shih J; Keller R
    Development; 1992 Dec; 116(4):887-99. PubMed ID: 1295742
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell motility driving mediolateral intercalation in explants of Xenopus laevis.
    Shih J; Keller R
    Development; 1992 Dec; 116(4):901-14. PubMed ID: 1295743
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microtubule disruption reveals that Spemann's organizer is subdivided into two domains by the vegetal alignment zone.
    Lane MC; Keller R
    Development; 1997 Feb; 124(4):895-906. PubMed ID: 9043070
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The function and mechanism of convergent extension during gastrulation of Xenopus laevis.
    Keller RE; Danilchik M; Gimlich R; Shih J
    J Embryol Exp Morphol; 1985 Nov; 89 Suppl():185-209. PubMed ID: 3831213
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell number in relation to primary pattern formation in the embryo of Xenopus laevis. II. Sequential cell recruitment, and control of the cell cycle, during mesoderm formation.
    Cooke J
    J Embryol Exp Morphol; 1979 Oct; 53():269-89. PubMed ID: 536690
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cellular mechanism underlying neural convergent extension in Xenopus laevis embryos.
    Elul T; Koehl MA; Keller R
    Dev Biol; 1997 Nov; 191(2):243-58. PubMed ID: 9398438
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pattern and morphogenesis of presumptive superficial mesoderm in two closely related species, Xenopus laevis and Xenopus tropicalis.
    Shook DR; Majer C; Keller R
    Dev Biol; 2004 Jun; 270(1):163-85. PubMed ID: 15136148
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Directional migration of leading-edge mesoderm generates physical forces: Implication in Xenopus notochord formation during gastrulation.
    Hara Y; Nagayama K; Yamamoto TS; Matsumoto T; Suzuki M; Ueno N
    Dev Biol; 2013 Oct; 382(2):482-95. PubMed ID: 23933171
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alteration of the anterior-posterior embryonic axis: the pattern of gastrulation in macrocephalic frog embryos.
    Kao KR; Elinson RP
    Dev Biol; 1985 Jan; 107(1):239-51. PubMed ID: 4038389
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Directional mesoderm cell migration in the Xenopus gastrula.
    Winklbauer R; Nagel M
    Dev Biol; 1991 Dec; 148(2):573-89. PubMed ID: 1743402
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The entire mesodermal mantle behaves as Spemann's organizer in dorsoanterior enhanced Xenopus laevis embryos.
    Kao KR; Elinson RP
    Dev Biol; 1988 May; 127(1):64-77. PubMed ID: 3282938
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.