These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 24639620)

  • 1. Automatic Calibration Method for Driver's Head Orientation in Natural Driving Environment.
    Fu X; Guan X; Peli E; Liu H; Luo G
    IEEE trans Intell Transp Syst; 2012 Sep; 14(1):303-310. PubMed ID: 24639620
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Continuous Driver's Gaze Zone Estimation Using RGB-D Camera.
    Wang Y; Yuan G; Mi Z; Peng J; Ding X; Liang Z; Fu X
    Sensors (Basel); 2019 Mar; 19(6):. PubMed ID: 30875740
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Driver's Head Pose and Gaze Zone Estimation Based on Multi-Zone Templates Registration and Multi-Frame Point Cloud Fusion.
    Wang Y; Yuan G; Fu X
    Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35590843
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Faster R-CNN and Geometric Transformation-Based Detection of Driver's Eyes Using Multiple Near-Infrared Camera Sensors.
    Park SH; Yoon HS; Park KR
    Sensors (Basel); 2019 Jan; 19(1):. PubMed ID: 30621110
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual-Cameras-Based Driver's Eye Gaze Tracking System with Non-Linear Gaze Point Refinement.
    Wang Y; Ding X; Yuan G; Fu X
    Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336497
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep Learning-Based Gaze Detection System for Automobile Drivers Using a NIR Camera Sensor.
    Naqvi RA; Arsalan M; Batchuluun G; Yoon HS; Park KR
    Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29401681
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Driver Gaze Estimation Method Based on Deep Learning.
    Shah SM; Sun Z; Zaman K; Hussain A; Shoaib M; Pei L
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632365
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single Camera Face Position-Invariant Driver's Gaze Zone Classifier Based on Frame-Sequence Recognition Using 3D Convolutional Neural Networks.
    Lollett C; Kamezaki M; Sugano S
    Sensors (Basel); 2022 Aug; 22(15):. PubMed ID: 35957412
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-time driver monitoring system with facial landmark-based eye closure detection and head pose recognition.
    Kim D; Park H; Kim T; Kim W; Paik J
    Sci Rep; 2023 Oct; 13(1):18264. PubMed ID: 37880264
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigating the correspondence between driver head position and glance location.
    Lee J; Muñoz M; Fridman L; Victor T; Reimer B; Mehler B
    PeerJ Comput Sci; 2018; 4():e146. PubMed ID: 33816802
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gaze and Eye Tracking: Techniques and Applications in ADAS.
    Khan MQ; Lee S
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31847432
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical flow and driver's kinematics analysis for state of alert sensing.
    Jiménez-Pinto J; Torres-Torriti M
    Sensors (Basel); 2013 Mar; 13(4):4225-57. PubMed ID: 23539029
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-intrusive eye gaze tracking under natural head movements.
    Kim S; Sked M; Ji Q
    Conf Proc IEEE Eng Med Biol Soc; 2004; 2004():2271-4. PubMed ID: 17272180
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of Driver Status Hazard Level and the System.
    Gong J; Zhou S; Ren W
    Sensors (Basel); 2023 Aug; 23(17):. PubMed ID: 37687991
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Driving simulation in the clinic: testing visual exploratory behavior in daily life activities in patients with visual field defects.
    Hamel J; Kraft A; Ohl S; De Beukelaer S; Audebert HJ; Brandt SA
    J Vis Exp; 2012 Sep; (67):e4427. PubMed ID: 23023223
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-Accuracy 3D Gaze Estimation with Efficient Recalibration for Head-Mounted Gaze Tracking Systems.
    Xia Y; Liang J; Li Q; Xin P; Zhang N
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746135
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of bus drivers reaction to simulated traffic collision situations - eye-tracking studies.
    Bortkiewicz A; Gadzicka E; Siedlecka J; Kosobudzki M; Dania M; Szymczak W; Jóźwiak Z; Szyjkowska A; Viebig P; Pas-Wyroślak A; Makowiec-Dąbrowska T; Kapitaniak B; Hickman JS
    Int J Occup Med Environ Health; 2019 Apr; 32(2):161-174. PubMed ID: 30575822
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative Analysis of Kinect-Based and Oculus-Based Gaze Region Estimation Methods in a Driving Simulator.
    González-Ortega D; Díaz-Pernas FJ; Martínez-Zarzuela M; Antón-Rodríguez M
    Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33374560
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep Neuro-Vision Embedded Architecture for Safety Assessment in Perceptive Advanced Driver Assistance Systems: The Pedestrian Tracking System Use-Case.
    Rundo F; Conoci S; Spampinato C; Leotta R; Trenta F; Battiato S
    Front Neuroinform; 2021; 15():667008. PubMed ID: 34393746
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intelligent interior atmosphere lamp system based on quantum dot LEDs for safe driving assistance.
    Zhu C; Gao J; Lu M; Zhang Y; Wang Z; Huang Q; Wu Z; Gao Y; Wang Y; Yu WW; Hu J; Bai X
    Opt Express; 2023 Apr; 31(8):13028-13039. PubMed ID: 37157449
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.