BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 2464019)

  • 1. The uptake of fluorescein-conjugated dextran 70,000 by the small intestinal epithelium of the young rat and pig in relation to macromolecular transmission into the blood.
    Ekström GM; Weström BR; Telemo E; Karlsson BW
    J Dev Physiol; 1988 Jun; 10(3):227-33. PubMed ID: 2464019
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intestinal uptake and transmission of macromolecules into the blood in the young guinea pig.
    Ekström GM; Weström BR
    J Pediatr Gastroenterol Nutr; 1992 Jan; 14(1):71-8. PubMed ID: 1374124
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intestinal transmission of macromolecules (BSA and FITC-labelled dextrans) in the neonatal pig. Influence of age of piglet and molecular weight of markers.
    Weström BR; Svendsen J; Ohlsson BG; Tagesson C; Karlsson BW
    Biol Neonate; 1984; 46(1):20-6. PubMed ID: 6204696
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intestinal transmission of macromolecules (BSA and FITC-dextran) in the neonatal pig: enhancing effect of colostrum, proteins and proteinase inhibitors.
    Weström BR; Ohlsson BG; Svendsen J; Tagesson C; Karlsson BW
    Biol Neonate; 1985; 47(6):359-66. PubMed ID: 2411303
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cathepsin B and D activities in intestinal mucosa during postnatal development in pigs. Relation to intestinal uptake and transmission of macromolecules.
    Ekström GM; Weström BR
    Biol Neonate; 1991; 59(5):314-21. PubMed ID: 1714775
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intestinal macromolecular transmission in the young rat: influence of protease inhibitors during development.
    Telemo E; Weström BR; Ekström G; Karlsson BW
    Biol Neonate; 1987; 52(3):141-8. PubMed ID: 2443191
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insulin involvement in intestinal macromolecular transmission and closure in neonatal pigs.
    Svendsen LS; Weström BR; Svendsen J; Ohlsson BG; Ekman R; Karlsson BW
    J Pediatr Gastroenterol Nutr; 1986; 5(2):299-304. PubMed ID: 3083082
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intestinal macromolecular transmission in underprivileged and unaffected newborn pigs: implication for survival of underprivileged pigs.
    Svendsen LS; Weström BR; Svendsen J; Olsson AC; Karlsson BW
    Res Vet Sci; 1990 Mar; 48(2):184-9. PubMed ID: 1692152
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Decrease in intestinal permeability to polyethylene glycol 1000 during development in the pig.
    Weström BR; Tagesson C; Leandersson P; Folkesson HG; Svendsen J
    J Dev Physiol; 1989 Feb; 11(2):83-7. PubMed ID: 2476476
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Small Intestinal Permeability and Gut-Transit Time Determined with Low and High Molecular Weight Fluorescein Isothiocyanate-Dextrans in C3H Mice.
    Woting A; Blaut M
    Nutrients; 2018 May; 10(6):. PubMed ID: 29843428
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Demonstration of acidity in intestinal vacuoles of the suckling rat and pig.
    Baintner K
    J Histochem Cytochem; 1994 Feb; 42(2):231-8. PubMed ID: 7507141
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increased gut permeability to fluorescein isothiocyanate-dextran after total parenteral nutrition in the rat.
    Purandare S; Offenbartl K; Weström B; Bengmark S
    Scand J Gastroenterol; 1989 Aug; 24(6):678-82. PubMed ID: 2479082
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in macromolecular permeability of microvessels in rat small intestine after total occlusion ischemia/reperfusion.
    Carati CJ; Rambaldo S; Gannon BJ
    Microcirc Endothelium Lymphatics; 1988 Feb; 4(1):69-86. PubMed ID: 3380065
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective double staining of interstitial cells of Cajal and macrophage-like cells in small intestine by an improved supravital methylene blue technique combined with FITC-dextran uptake.
    Mikkelsen HB; Thuneberg L; Wittrup IH
    Anat Embryol (Berl); 1988; 178(3):191-5. PubMed ID: 2458056
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Developmental changes in distribution of the mucous gel layer and intestinal permeability in rat small intestine.
    Iiboshi Y; Nezu R; Khan J; Chen K; Cui L; Yoshida H; Wasa M; Fukuzawa M; Kamata S; Takagi Y; Okada A
    JPEN J Parenter Enteral Nutr; 1996; 20(6):406-11. PubMed ID: 8950741
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Total parenteral nutrition decreases luminal mucous gel and increases permeability of small intestine.
    Iiboshi Y; Nezu R; Kennedy M; Fujii M; Wasa M; Fukuzawa M; Kamata S; Takagi Y; Okada A
    JPEN J Parenter Enteral Nutr; 1994; 18(4):346-50. PubMed ID: 7523742
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular weight dependence of permselectivity to rat small intestinal blood-lymph barrier for exogenous macromolecules absorbed from lumen.
    Yoshikawa H; Takada K; Muranishi S
    J Pharmacobiodyn; 1984 Jan; 7(1):1-6. PubMed ID: 6202865
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasma pharmacokinetics and interstitial diffusion of macromolecules in a capillary bed.
    Nugent LJ; Jain RK
    Am J Physiol; 1984 Jan; 246(1 Pt 2):H129-37. PubMed ID: 6198927
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adhesive mucous gel layer and mucus release as intestinal barrier in rats.
    Iiboshi Y; Nezu R; Cui L; Chen K; Khan J; Yoshida H; Sando K; Kamata S; Takagi Y; Okada A
    JPEN J Parenter Enteral Nutr; 1996; 20(2):98-104. PubMed ID: 8676540
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of fluorescent plasma markers for in vivo microscopy of the microcirculation.
    Reeves KJ; Brookes ZL; Reed MW; Brown NJ
    J Vasc Res; 2012; 49(2):132-43. PubMed ID: 22261871
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.