These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 2464019)
1. The uptake of fluorescein-conjugated dextran 70,000 by the small intestinal epithelium of the young rat and pig in relation to macromolecular transmission into the blood. Ekström GM; Weström BR; Telemo E; Karlsson BW J Dev Physiol; 1988 Jun; 10(3):227-33. PubMed ID: 2464019 [TBL] [Abstract][Full Text] [Related]
2. Intestinal uptake and transmission of macromolecules into the blood in the young guinea pig. Ekström GM; Weström BR J Pediatr Gastroenterol Nutr; 1992 Jan; 14(1):71-8. PubMed ID: 1374124 [TBL] [Abstract][Full Text] [Related]
3. Intestinal transmission of macromolecules (BSA and FITC-labelled dextrans) in the neonatal pig. Influence of age of piglet and molecular weight of markers. Weström BR; Svendsen J; Ohlsson BG; Tagesson C; Karlsson BW Biol Neonate; 1984; 46(1):20-6. PubMed ID: 6204696 [TBL] [Abstract][Full Text] [Related]
4. Intestinal transmission of macromolecules (BSA and FITC-dextran) in the neonatal pig: enhancing effect of colostrum, proteins and proteinase inhibitors. Weström BR; Ohlsson BG; Svendsen J; Tagesson C; Karlsson BW Biol Neonate; 1985; 47(6):359-66. PubMed ID: 2411303 [TBL] [Abstract][Full Text] [Related]
5. Cathepsin B and D activities in intestinal mucosa during postnatal development in pigs. Relation to intestinal uptake and transmission of macromolecules. Ekström GM; Weström BR Biol Neonate; 1991; 59(5):314-21. PubMed ID: 1714775 [TBL] [Abstract][Full Text] [Related]
6. Intestinal macromolecular transmission in the young rat: influence of protease inhibitors during development. Telemo E; Weström BR; Ekström G; Karlsson BW Biol Neonate; 1987; 52(3):141-8. PubMed ID: 2443191 [TBL] [Abstract][Full Text] [Related]
8. Intestinal macromolecular transmission in underprivileged and unaffected newborn pigs: implication for survival of underprivileged pigs. Svendsen LS; Weström BR; Svendsen J; Olsson AC; Karlsson BW Res Vet Sci; 1990 Mar; 48(2):184-9. PubMed ID: 1692152 [TBL] [Abstract][Full Text] [Related]
9. Decrease in intestinal permeability to polyethylene glycol 1000 during development in the pig. Weström BR; Tagesson C; Leandersson P; Folkesson HG; Svendsen J J Dev Physiol; 1989 Feb; 11(2):83-7. PubMed ID: 2476476 [TBL] [Abstract][Full Text] [Related]
10. Small Intestinal Permeability and Gut-Transit Time Determined with Low and High Molecular Weight Fluorescein Isothiocyanate-Dextrans in C3H Mice. Woting A; Blaut M Nutrients; 2018 May; 10(6):. PubMed ID: 29843428 [TBL] [Abstract][Full Text] [Related]
11. Demonstration of acidity in intestinal vacuoles of the suckling rat and pig. Baintner K J Histochem Cytochem; 1994 Feb; 42(2):231-8. PubMed ID: 7507141 [TBL] [Abstract][Full Text] [Related]
12. Increased gut permeability to fluorescein isothiocyanate-dextran after total parenteral nutrition in the rat. Purandare S; Offenbartl K; Weström B; Bengmark S Scand J Gastroenterol; 1989 Aug; 24(6):678-82. PubMed ID: 2479082 [TBL] [Abstract][Full Text] [Related]
13. Changes in macromolecular permeability of microvessels in rat small intestine after total occlusion ischemia/reperfusion. Carati CJ; Rambaldo S; Gannon BJ Microcirc Endothelium Lymphatics; 1988 Feb; 4(1):69-86. PubMed ID: 3380065 [TBL] [Abstract][Full Text] [Related]
14. Selective double staining of interstitial cells of Cajal and macrophage-like cells in small intestine by an improved supravital methylene blue technique combined with FITC-dextran uptake. Mikkelsen HB; Thuneberg L; Wittrup IH Anat Embryol (Berl); 1988; 178(3):191-5. PubMed ID: 2458056 [TBL] [Abstract][Full Text] [Related]
15. Developmental changes in distribution of the mucous gel layer and intestinal permeability in rat small intestine. Iiboshi Y; Nezu R; Khan J; Chen K; Cui L; Yoshida H; Wasa M; Fukuzawa M; Kamata S; Takagi Y; Okada A JPEN J Parenter Enteral Nutr; 1996; 20(6):406-11. PubMed ID: 8950741 [TBL] [Abstract][Full Text] [Related]
16. Total parenteral nutrition decreases luminal mucous gel and increases permeability of small intestine. Iiboshi Y; Nezu R; Kennedy M; Fujii M; Wasa M; Fukuzawa M; Kamata S; Takagi Y; Okada A JPEN J Parenter Enteral Nutr; 1994; 18(4):346-50. PubMed ID: 7523742 [TBL] [Abstract][Full Text] [Related]
17. Molecular weight dependence of permselectivity to rat small intestinal blood-lymph barrier for exogenous macromolecules absorbed from lumen. Yoshikawa H; Takada K; Muranishi S J Pharmacobiodyn; 1984 Jan; 7(1):1-6. PubMed ID: 6202865 [TBL] [Abstract][Full Text] [Related]
18. Plasma pharmacokinetics and interstitial diffusion of macromolecules in a capillary bed. Nugent LJ; Jain RK Am J Physiol; 1984 Jan; 246(1 Pt 2):H129-37. PubMed ID: 6198927 [TBL] [Abstract][Full Text] [Related]
19. Adhesive mucous gel layer and mucus release as intestinal barrier in rats. Iiboshi Y; Nezu R; Cui L; Chen K; Khan J; Yoshida H; Sando K; Kamata S; Takagi Y; Okada A JPEN J Parenter Enteral Nutr; 1996; 20(2):98-104. PubMed ID: 8676540 [TBL] [Abstract][Full Text] [Related]
20. Evaluation of fluorescent plasma markers for in vivo microscopy of the microcirculation. Reeves KJ; Brookes ZL; Reed MW; Brown NJ J Vasc Res; 2012; 49(2):132-43. PubMed ID: 22261871 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]