BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 2464070)

  • 1. Phosphofructokinase in the rat nervous system: regional differences in activity and characteristics of axonal transport.
    Oblinger MM; Foe LG; Kwiatkowska D; Kemp RG
    J Neurosci Res; 1988 Sep; 21(1):25-34. PubMed ID: 2464070
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Axotomy accelerates slow component b of axonal transport.
    Jacob JM; McQuarrie IG
    J Neurobiol; 1991 Sep; 22(6):570-82. PubMed ID: 1717647
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alterations in the activity and isozymic profile of human phosphofructokinase during malignant transformation in vivo and in vitro: transformation- and progression-linked discriminants of malignancy.
    Vora S; Halper JP; Knowles DM
    Cancer Res; 1985 Jul; 45(7):2993-3001. PubMed ID: 3159473
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Axonal transport of type III intermediate filament protein peripherin in intact and regenerating motor axons of the rat sciatic nerve.
    Chadan S; Le Gall JY; Di Giamberardino L; Filliatreau G
    J Neurosci Res; 1994 Oct; 39(2):127-39. PubMed ID: 7530776
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isozymic composition and regulatory properties of phosphofructokinase from well-differentiated and anaplastic medullary thyroid carcinomas of the rat.
    Oskam R; Rijksen G; Staal GE; Vora S
    Cancer Res; 1985 Jan; 45(1):135-42. PubMed ID: 3155492
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast axonal transport in central nervous system and peripheral nervous system axons following axotomy.
    Redshaw JD; Bisby MA
    J Neurobiol; 1984 Mar; 15(2):109-17. PubMed ID: 6201591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studies of gene expression and activity of hexokinase, phosphofructokinase and glycogen synthase in human skeletal muscle in states of altered insulin-stimulated glucose metabolism.
    Vestergaard H
    Dan Med Bull; 1999 Feb; 46(1):13-34. PubMed ID: 10081651
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeting of the catalytic subunit of protein phosphatase-1 to the glycolytic enzyme phosphofructokinase.
    Zhao S; Lee EY
    Biochemistry; 1997 Jul; 36(27):8318-24. PubMed ID: 9204878
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression of insulin-like growth factors and corresponding binding proteins (IGFBP 1-6) in rat spinal cord and peripheral nerve after axonal injuries.
    Hammarberg H; Risling M; Hökfelt T; Cullheim S; Piehl F
    J Comp Neurol; 1998 Oct; 400(1):57-72. PubMed ID: 9762866
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calcium/calmodulin-dependent protein kinase IIalpha in optic axons moves with slow axonal transport and undergoes posttranslational modification.
    Lund LM; McQuarrie IG
    Biochem Biophys Res Commun; 2001 Dec; 289(5):1157-61. PubMed ID: 11741313
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bidirectional axonal transport of 16S acetylcholinesterase in rat sciatic nerve.
    Fernandez HL; Duell MJ; Festoff BW
    J Neurobiol; 1980; 11(1):31-9. PubMed ID: 6153400
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unimpaired energy metabolism in experimental neuropathy induced by p-bromophenylacetylurea.
    Brimijoin S; Mintz KP
    Muscle Nerve; 1984; 7(9):725-32. PubMed ID: 6100457
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isozymes of human phosphofructokinase: biochemical and genetic aspects.
    Vora S
    Isozymes Curr Top Biol Med Res; 1983; 11():3-23. PubMed ID: 6227585
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Changes in the rate of axonal flow of proteins through the branches of motor and sensory neurocytes during the period of intense growth of the sciatic nerve in rats].
    Mustafin AG; Prokof'ev SA
    Biull Eksp Biol Med; 1981; 91(1):59-61. PubMed ID: 6163492
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Correlation of axonal regeneration and slow component B in two branches of a single axon.
    Wujek JR; Lasek RJ
    J Neurosci; 1983 Feb; 3(2):243-51. PubMed ID: 6185656
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Overexpression of caveolin-1 results in increased plasma membrane targeting of glycolytic enzymes: the structural basis for a membrane associated metabolic compartment.
    Raikar LS; Vallejo J; Lloyd PG; Hardin CD
    J Cell Biochem; 2006 Jul; 98(4):861-71. PubMed ID: 16453288
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of immunosuppression on regrowth of adult rat retinal ganglion cell axons into peripheral nerve allografts.
    Gillon RS; Cui Q; Dunlop SA; Harvey AR
    J Neurosci Res; 2003 Nov; 74(4):524-32. PubMed ID: 14598296
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of glycolysis in sea bass liver: phosphofructokinase isozymes.
    Fideu MD; Pérez ML; Herranz MJ; Ruiz-Amil M
    Rev Esp Fisiol; 1989 Jun; 45(2):179-86. PubMed ID: 2528197
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Axonal transport of choline acetyltransferase and 6-phosphofructokinase activities in genetically diabetic mice.
    Calcutt NA; Willars GB; Tomlinson DR
    Muscle Nerve; 1988 Dec; 11(12):1206-10. PubMed ID: 2467203
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ganglioside treatment of streptozotocin-diabetic rats prevents defective axonal transport of 6-phosphofructokinase activity.
    Calcutt NA; Tomlinson DR; Willars GB
    J Neurochem; 1988 May; 50(5):1478-83. PubMed ID: 2452237
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.