These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 24641006)
1. High proton conductivity and spectroscopic investigations of metal-organic framework materials impregnated by strong acids. Dybtsev DN; Ponomareva VG; Aliev SB; Chupakhin AP; Gallyamov MR; Moroz NK; Kolesov BA; Kovalenko KA; Shutova ES; Fedin VP ACS Appl Mater Interfaces; 2014 Apr; 6(7):5161-7. PubMed ID: 24641006 [TBL] [Abstract][Full Text] [Related]
2. Imparting high proton conductivity to a metal-organic framework material by controlled acid impregnation. Ponomareva VG; Kovalenko KA; Chupakhin AP; Dybtsev DN; Shutova ES; Fedin VP J Am Chem Soc; 2012 Sep; 134(38):15640-3. PubMed ID: 22958118 [TBL] [Abstract][Full Text] [Related]
3. Enhanced proton conductivity of metal organic framework at low humidity by improvement in water retention. Du J; Yu G; Lin H; Jie P; Zhang F; Qu F; Wen C; Feng L; Liang X J Colloid Interface Sci; 2020 Aug; 573():360-369. PubMed ID: 32298929 [TBL] [Abstract][Full Text] [Related]
4. pH-dependent proton conducting behavior in a metal-organic framework material. Phang WJ; Lee WR; Yoo K; Ryu DW; Kim B; Hong CS Angew Chem Int Ed Engl; 2014 Aug; 53(32):8383-7. PubMed ID: 24986637 [TBL] [Abstract][Full Text] [Related]
5. Control of crystalline proton-conducting pathways by water-induced transformations of hydrogen-bonding networks in a metal-organic framework. Sadakiyo M; Yamada T; Honda K; Matsui H; Kitagawa H J Am Chem Soc; 2014 May; 136(21):7701-7. PubMed ID: 24795110 [TBL] [Abstract][Full Text] [Related]
6. Guest molecule-responsive functional calcium phosphonate frameworks for tuned proton conductivity. Bazaga-García M; Colodrero RM; Papadaki M; Garczarek P; Zoń J; Olivera-Pastor P; Losilla ER; León-Reina L; Aranda MA; Choquesillo-Lazarte D; Demadis KD; Cabeza A J Am Chem Soc; 2014 Apr; 136(15):5731-9. PubMed ID: 24641594 [TBL] [Abstract][Full Text] [Related]
7. Preparation of a Cross-Linked Sulfonated Poly(arylene ether ketone) Proton Exchange Membrane with Enhanced Proton Conductivity and Methanol Resistance by Introducing an Ionic Liquid-Impregnated Metal Organic Framework. Ru C; Gu Y; Na H; Li H; Zhao C ACS Appl Mater Interfaces; 2019 Sep; 11(35):31899-31908. PubMed ID: 31407896 [TBL] [Abstract][Full Text] [Related]
8. Water-mediated proton conduction in a robust triazolyl phosphonate metal-organic framework with hydrophilic nanochannels. Begum S; Wang Z; Donnadio A; Costantino F; Casciola M; Valiullin R; Chmelik C; Bertmer M; Kärger J; Haase J; Krautscheid H Chemistry; 2014 Jul; 20(29):8862-6. PubMed ID: 24939723 [TBL] [Abstract][Full Text] [Related]
9. XRD and IR structural investigations of a particular breathing effect in the MOF-type gallium terephthalate MIL-53(Ga). Volkringer C; Loiseau T; Guillou N; Férey G; Elkaïm E; Vimont A Dalton Trans; 2009 Mar; (12):2241-9. PubMed ID: 19274304 [TBL] [Abstract][Full Text] [Related]
10. A Tetradentate Phosphonate Ligand-based Ni-MOF as a Support for Designing High-performance Proton-conducting Materials. Chakraborty D; Ghorai A; Chowdhury A; Banerjee S; Bhaumik A Chem Asian J; 2021 Jun; 16(12):1562-1569. PubMed ID: 33885226 [TBL] [Abstract][Full Text] [Related]
11. Unique Proton Dynamics in an Efficient MOF-Based Proton Conductor. Wei YS; Hu XP; Han Z; Dong XY; Zang SQ; Mak TC J Am Chem Soc; 2017 Mar; 139(9):3505-3512. PubMed ID: 28192991 [TBL] [Abstract][Full Text] [Related]
12. Facile proton conduction via ordered water molecules in a phosphonate metal-organic framework. Taylor JM; Mah RK; Moudrakovski IL; Ratcliffe CI; Vaidhyanathan R; Shimizu GK J Am Chem Soc; 2010 Oct; 132(40):14055-7. PubMed ID: 20857972 [TBL] [Abstract][Full Text] [Related]
13. Boosting Proton Conductivity in Highly Robust 3D Inorganic Cationic Extended Frameworks through Ion Exchange with Dihydrogen Phosphate Anions. Xiao C; Wang Y; Chen L; Yin X; Shu J; Sheng D; Chai Z; Albrecht-Schmitt TE; Wang S Chemistry; 2015 Dec; 21(49):17591-5. PubMed ID: 26489981 [TBL] [Abstract][Full Text] [Related]
14. Superprotonic Conductivity of MOFs Confining Zwitterionic Sulfamic Acid as Proton Source and Conducting Medium. Sharma A; Lim J; Lee S; Han S; Seong J; Bin Baek S; Soo Lah M Angew Chem Int Ed Engl; 2023 Jul; 62(29):e202302376. PubMed ID: 37160648 [TBL] [Abstract][Full Text] [Related]
15. Proton conductivity in doped aluminum phosphonate sponges. Wegener J; Kaltbeitzel A; Graf R; Klapper M; Müllen K ChemSusChem; 2014 Apr; 7(4):1148-54. PubMed ID: 24573985 [TBL] [Abstract][Full Text] [Related]
16. Hydrogen-Bonded Organic Frameworks (HOFs): A New Class of Porous Crystalline Proton-Conducting Materials. Karmakar A; Illathvalappil R; Anothumakkool B; Sen A; Samanta P; Desai AV; Kurungot S; Ghosh SK Angew Chem Int Ed Engl; 2016 Aug; 55(36):10667-71. PubMed ID: 27464784 [TBL] [Abstract][Full Text] [Related]
18. Super Proton Conductivity Through Control of Hydrogen-Bonding Networks in Flexible Metal-Organic Frameworks. Kwon NH; Han S; Kim J; Cho ES Small; 2023 Aug; 19(32):e2301122. PubMed ID: 37069772 [TBL] [Abstract][Full Text] [Related]
19. Effect of SiO2 on relaxation phenomena and mechanism of ion conductivity of [Nafion/(SiO2)x] composite membranes. Di Noto V; Gliubizzi R; Negro E; Pace G J Phys Chem B; 2006 Dec; 110(49):24972-86. PubMed ID: 17149919 [TBL] [Abstract][Full Text] [Related]
20. The Kagomé topology of the gallium and indium metal-organic framework types with a MIL-68 structure: synthesis, XRD, solid-state NMR characterizations, and hydrogen adsorption. Volkringer C; Meddouri M; Loiseau T; Guillou N; Marrot J; Férey G; Haouas M; Taulelle F; Audebrand N; Latroche M Inorg Chem; 2008 Dec; 47(24):11892-901. PubMed ID: 19053340 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]