These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 24641621)

  • 41. Epitaxial growth of graphene on transition metal surfaces: chemical vapor deposition versus liquid phase deposition.
    Grandthyll S; Gsell S; Weinl M; Schreck M; Hüfner S; Müller F
    J Phys Condens Matter; 2012 Aug; 24(31):314204. PubMed ID: 22820467
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Polycrystallinity and stacking in CVD graphene.
    Tsen AW; Brown L; Havener RW; Park J
    Acc Chem Res; 2013 Oct; 46(10):2286-96. PubMed ID: 23135386
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Correlating defect density with carrier mobility in large-scaled graphene films: Raman spectral signatures for the estimation of defect density.
    Hwang JY; Kuo CC; Chen LC; Chen KH
    Nanotechnology; 2010 Nov; 21(46):465705. PubMed ID: 20972312
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Nitrogen-doped graphene network supported copper nanoparticles encapsulated with graphene shells for surface-enhanced Raman scattering.
    Zhang X; Shi C; Liu E; Li J; Zhao N; He C
    Nanoscale; 2015 Oct; 7(40):17079-87. PubMed ID: 26419953
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Growth intermediates for CVD graphene on Cu(111): carbon clusters and defective graphene.
    Niu T; Zhou M; Zhang J; Feng Y; Chen W
    J Am Chem Soc; 2013 Jun; 135(22):8409-14. PubMed ID: 23675983
    [TBL] [Abstract][Full Text] [Related]  

  • 46. In situ nitrogen-doped graphene grown from polydimethylsiloxane by plasma enhanced chemical vapor deposition.
    Wang C; Zhou Y; He L; Ng TW; Hong G; Wu QH; Gao F; Lee CS; Zhang W
    Nanoscale; 2013 Jan; 5(2):600-5. PubMed ID: 23203220
    [TBL] [Abstract][Full Text] [Related]  

  • 47. CO2 enhanced chemical vapor deposition growth of few-layer graphene over NiO(x).
    Son IH; Song HJ; Kwon S; Bachmatiuk A; Lee SJ; Benayad A; Park JH; Choi JY; Chang H; Rümmeli MH
    ACS Nano; 2014 Sep; 8(9):9224-32. PubMed ID: 25171048
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Unique synthesis of few-layer graphene films on carbon-doped Pt(83)Rh(17) surfaces.
    Gao JH; Fujita D; Xu MS; Onishi K; Miyamoto S
    ACS Nano; 2010 Feb; 4(2):1026-32. PubMed ID: 20104857
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Catalytic transparency of hexagonal boron nitride on copper for chemical vapor deposition growth of large-area and high-quality graphene.
    Wang M; Kim M; Odkhuu D; Lee J; Jang WJ; Kahng SJ; Park N; Ruoff RS; Song YJ; Lee S
    ACS Nano; 2014 Jun; 8(6):5478-83. PubMed ID: 24870706
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Large-scale growth and characterizations of nitrogen-doped monolayer graphene sheets.
    Jin Z; Yao J; Kittrell C; Tour JM
    ACS Nano; 2011 May; 5(5):4112-7. PubMed ID: 21476571
    [TBL] [Abstract][Full Text] [Related]  

  • 51. CMOS-compatible synthesis of large-area, high-mobility graphene by chemical vapor deposition of acetylene on cobalt thin films.
    Ramón ME; Gupta A; Corbet C; Ferrer DA; Movva HC; Carpenter G; Colombo L; Bourianoff G; Doczy M; Akinwande D; Tutuc E; Banerjee SK
    ACS Nano; 2011 Sep; 5(9):7198-204. PubMed ID: 21800895
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Efficient n-doping of graphene films by APPE (aminophenyl propargyl ether): a substituent effect.
    Kim Y; Yoo JM; Jeon HR; Hong BH
    Phys Chem Chem Phys; 2013 Nov; 15(42):18353-6. PubMed ID: 24071739
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Real-time optical diagnostics of graphene growth induced by pulsed chemical vapor deposition.
    Puretzky AA; Geohegan DB; Pannala S; Rouleau CM; Regmi M; Thonnard N; Eres G
    Nanoscale; 2013 Jul; 5(14):6507-17. PubMed ID: 23752798
    [TBL] [Abstract][Full Text] [Related]  

  • 54. CVD of pure copper films from novel iso-ureate complexes.
    Willcocks AM; Pugh T; Hamilton JA; Johnson AL; Richards SP; Kingsley AJ
    Dalton Trans; 2013 Apr; 42(15):5554-65. PubMed ID: 23425976
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Influence of nitrogen doping on oxygen reduction electrocatalysis at carbon nanofiber electrodes.
    Maldonado S; Stevenson KJ
    J Phys Chem B; 2005 Mar; 109(10):4707-16. PubMed ID: 16851552
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Highly Conductive Nitrogen-Doped Graphene Grown on Glass toward Electrochromic Applications.
    Cui L; Chen X; Liu B; Chen K; Chen Z; Qi Y; Xie H; Zhou F; Rümmeli MH; Zhang Y; Liu Z
    ACS Appl Mater Interfaces; 2018 Sep; 10(38):32622-32630. PubMed ID: 30170490
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Segregation of sublattice domains in nitrogen-doped graphene.
    Zabet-Khosousi A; Zhao L; Pálová L; Hybertsen MS; Reichman DR; Pasupathy AN; Flynn GW
    J Am Chem Soc; 2014 Jan; 136(4):1391-7. PubMed ID: 24392951
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Superclean Growth of Graphene Using a Cold-Wall Chemical Vapor Deposition Approach.
    Jia K; Ci H; Zhang J; Sun Z; Ma Z; Zhu Y; Liu S; Liu J; Sun L; Liu X; Sun J; Yin W; Peng H; Lin L; Liu Z
    Angew Chem Int Ed Engl; 2020 Sep; 59(39):17214-17218. PubMed ID: 32542959
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The study of the effects of cooling conditions on high quality graphene growth by the APCVD method.
    Xiao K; Wu H; Lv H; Wu X; Qian H
    Nanoscale; 2013 Jun; 5(12):5524-9. PubMed ID: 23674269
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Laser-induced solid-phase doped graphene.
    Choi I; Jeong HY; Jung DY; Byun M; Choi CG; Hong BH; Choi SY; Lee KJ
    ACS Nano; 2014 Aug; 8(8):7671-7. PubMed ID: 25006987
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.