BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 24641630)

  • 1. Three-dimensional and time-ordered surface-enhanced Raman scattering hotspot matrix.
    Liu H; Yang Z; Meng L; Sun Y; Wang J; Yang L; Liu J; Tian Z
    J Am Chem Soc; 2014 Apr; 136(14):5332-41. PubMed ID: 24641630
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional hotspots in evaporating nanoparticle sols for ultrahigh Raman scattering: solid-liquid interface effects.
    Sun Y; Han Z; Liu H; He S; Yang L; Liu J
    Nanoscale; 2015 Apr; 7(15):6619-26. PubMed ID: 25794035
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A dynamic surface enhanced Raman spectroscopy method for ultra-sensitive detection: from the wet state to the dry state.
    Yang L; Li P; Liu H; Tang X; Liu J
    Chem Soc Rev; 2015 May; 44(10):2837-48. PubMed ID: 25761511
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glycerol-Assisted Construction of Long-Life Three-Dimensional Surface-Enhanced Raman Scattering Hot Spot Matrix.
    Wang Y; Wei Z; Zhang Y; Chen Y
    Langmuir; 2019 Dec; 35(48):15795-15804. PubMed ID: 31246031
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional surface-enhanced Raman scattering hotspots in spherical colloidal superstructure for identification and detection of drugs in human urine.
    Han Z; Liu H; Wang B; Weng S; Yang L; Liu J
    Anal Chem; 2015; 87(9):4821-8. PubMed ID: 25853724
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A hanging plasmonic droplet: three-dimensional SERS hotspots for a highly sensitive multiplex detection of amino acids.
    Wang H; Fang J; Xu J; Wang F; Sun B; He S; Sun G; Liu H
    Analyst; 2015 May; 140(9):2973-8. PubMed ID: 25799000
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface-Enhanced Raman Spectroscopy on Liquid Interfacial Nanoparticle Arrays for Multiplex Detecting Drugs in Urine.
    Ma Y; Liu H; Mao M; Meng J; Yang L; Liu J
    Anal Chem; 2016 Aug; 88(16):8145-51. PubMed ID: 27401135
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Based on time and spatial-resolved SERS mapping strategies for detection of pesticides.
    Ma B; Li P; Yang L; Liu J
    Talanta; 2015 Aug; 141():1-7. PubMed ID: 25966372
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-Dimensional Surface-Enhanced Raman Scattering Platforms: Large-Scale Plasmonic Hotspots for New Applications in Sensing, Microreaction, and Data Storage.
    Phan-Quang GC; Han X; Koh CSL; Sim HYF; Lay CL; Leong SX; Lee YH; Pazos-Perez N; Alvarez-Puebla RA; Ling XY
    Acc Chem Res; 2019 Jul; 52(7):1844-1854. PubMed ID: 31180637
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Layer-by-layer assembly of Ag nanowires into 3D woodpile-like structures to achieve high density "hot spots" for surface-enhanced Raman scattering.
    Chen M; Phang IY; Lee MR; Yang JK; Ling XY
    Langmuir; 2013 Jun; 29(23):7061-9. PubMed ID: 23706081
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hierarchical 3D SERS substrates fabricated by integrating photolithographic microstructures and self-assembly of silver nanoparticles.
    Zhang Q; Lee YH; Phang IY; Lee CK; Ling XY
    Small; 2014 Jul; 10(13):2703-11. PubMed ID: 24616294
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-Healing Plasmonic Metal Liquid as a Quantitative Surface-Enhanced Raman Scattering Analyzer in Two-Liquid-Phase Systems.
    Su M; Li X; Zhang S; Yu F; Tian L; Jiang Y; Liu H
    Anal Chem; 2019 Feb; 91(3):2288-2295. PubMed ID: 30615424
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthetically directed self-assembly and enhanced surface-enhanced Raman scattering property of twinned crystalline Ag/Ag homojunction nanoparticles.
    Feng X; Ruan F; Hong R; Ye J; Hu J; Hu G; Yang Z
    Langmuir; 2011 Mar; 27(6):2204-10. PubMed ID: 21323368
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasmonic nano-protrusions: hierarchical nanostructures for single-molecule Raman spectroscopy.
    Basuray S; Pathak A; Bok S; Chen B; Hamm SC; Mathai CJ; Guha S; Gangopadhyay K; Gangopadhyay S
    Nanotechnology; 2017 Jan; 28(2):025302. PubMed ID: 27905323
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polyethylenimine-interlayered core-shell-satellite 3D magnetic microspheres as versatile SERS substrates.
    Wang C; Li P; Wang J; Rong Z; Pang Y; Xu J; Dong P; Xiao R; Wang S
    Nanoscale; 2015 Nov; 7(44):18694-707. PubMed ID: 26502285
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gold nanoparticle-paper as a three-dimensional surface enhanced Raman scattering substrate.
    Ngo YH; Li D; Simon GP; Garnier G
    Langmuir; 2012 Jun; 28(23):8782-90. PubMed ID: 22594710
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimal Hotspots of Dynamic Surfaced-Enhanced Raman Spectroscopy for Drugs Quantitative Detection.
    Yan X; Li P; Zhou B; Tang X; Li X; Weng S; Yang L; Liu J
    Anal Chem; 2017 May; 89(9):4875-4881. PubMed ID: 28357873
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hotspot-induced transformation of surface-enhanced Raman scattering fingerprints.
    Chen T; Wang H; Chen G; Wang Y; Feng Y; Teo WS; Wu T; Chen H
    ACS Nano; 2010 Jun; 4(6):3087-94. PubMed ID: 20509669
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D SERS (surface enhanced Raman scattering) imaging of intracellular pathways.
    Huang KC; Bando K; Ando J; Smith NI; Fujita K; Kawata S
    Methods; 2014 Jul; 68(2):348-53. PubMed ID: 24556553
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly-ordered, 3D petal-like array for surface-enhanced Raman scattering.
    Qian C; Ni C; Yu W; Wu W; Mao H; Wang Y; Xu J
    Small; 2011 Jul; 7(13):1800-6. PubMed ID: 21608122
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.