These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 24641679)
1. Aldehyde dehydrogenases in acute myeloid leukemia. Smith C; Gasparetto M; Humphries K; Pollyea DA; Vasiliou V; Jordan CT Ann N Y Acad Sci; 2014 Mar; 1310():58-68. PubMed ID: 24641679 [TBL] [Abstract][Full Text] [Related]
2. The rarity of ALDH(+) cells is the key to separation of normal versus leukemia stem cells by ALDH activity in AML patients. Hoang VT; Buss EC; Wang W; Hoffmann I; Raffel S; Zepeda-Moreno A; Baran N; Wuchter P; Eckstein V; Trumpp A; Jauch A; Ho AD; Lutz C Int J Cancer; 2015 Aug; 137(3):525-36. PubMed ID: 25545165 [TBL] [Abstract][Full Text] [Related]
3. ALDHs in normal and malignant hematopoietic cells: Potential new avenues for treatment of AML and other blood cancers. Gasparetto M; Smith CA Chem Biol Interact; 2017 Oct; 276():46-51. PubMed ID: 28645468 [TBL] [Abstract][Full Text] [Related]
4. Aldehyde dehydrogenase activity in leukemic blasts defines a subgroup of acute myeloid leukemia with adverse prognosis and superior NOD/SCID engrafting potential. Cheung AM; Wan TS; Leung JC; Chan LY; Huang H; Kwong YL; Liang R; Leung AY Leukemia; 2007 Jul; 21(7):1423-30. PubMed ID: 17476279 [TBL] [Abstract][Full Text] [Related]
6. The molecular signature of AML with increased ALDH activity suggests a stem cell origin. Blume R; Rempel E; Manta L; Saeed BR; Wang W; Raffel S; Ermakova O; Eckstein V; Benes V; Trumpp A; Ho AD; Lutz C Leuk Lymphoma; 2018 Sep; 59(9):2201-2210. PubMed ID: 29334844 [TBL] [Abstract][Full Text] [Related]
7. The effects of alcohol and aldehyde dehydrogenases on disorders of hematopoiesis. Smith C; Gasparetto M; Jordan C; Pollyea DA; Vasiliou V Adv Exp Med Biol; 2015; 815():349-59. PubMed ID: 25427917 [TBL] [Abstract][Full Text] [Related]
8. The Emerging Roles of Aldehyde Dehydrogenase in Acute Myeloid Leukemia and Its Therapeutic Potential. Rahmati A; Goudarzi S; Sheikhi M; Siyadat P; A Ferns G; Ayatollahi H Anticancer Agents Med Chem; 2023; 23(3):246-255. PubMed ID: 35692153 [TBL] [Abstract][Full Text] [Related]
9. Aldehyde dehydrogenases and their role in carcinogenesis. Lindahl R Crit Rev Biochem Mol Biol; 1992; 27(4-5):283-335. PubMed ID: 1521460 [TBL] [Abstract][Full Text] [Related]
10. [Pathobiology of acute myeloid leukemia]. Christ O; Feuring-Buske M; Hiddemann W; Buske C Med Klin (Munich); 2007 Apr; 102(4):290-5. PubMed ID: 17426932 [TBL] [Abstract][Full Text] [Related]
11. Insights into cell ontogeny, age, and acute myeloid leukemia. Chaudhury SS; Morison JK; Gibson BE; Keeshan K Exp Hematol; 2015 Sep; 43(9):745-55. PubMed ID: 26051919 [TBL] [Abstract][Full Text] [Related]
12. Update of ALDH as a Potential Biomarker and Therapeutic Target for AML. Yang X; Yao R; Wang H Biomed Res Int; 2018; 2018():9192104. PubMed ID: 29516013 [TBL] [Abstract][Full Text] [Related]
13. Identification and separation of normal hematopoietic stem cells and leukemia stem cells from patients with acute myeloid leukemia. Hoang VT; Hoffmann I; Borowski K; Zepeda-Moreno A; Ran D; Buss EC; Wuchter P; Eckstein V; Ho AD Methods Mol Biol; 2013; 1035():217-30. PubMed ID: 23959995 [TBL] [Abstract][Full Text] [Related]
14. JmjC-domain containing histone demethylase 1B-mediated p15(Ink4b) suppression promotes the proliferation of leukemic progenitor cells through modulation of cell cycle progression in acute myeloid leukemia. Nakamura S; Tan L; Nagata Y; Takemura T; Asahina A; Yokota D; Yagyu T; Shibata K; Fujisawa S; Ohnishi K Mol Carcinog; 2013 Jan; 52(1):57-69. PubMed ID: 22086844 [TBL] [Abstract][Full Text] [Related]
15. Heterogeneity of leukemia stem cell candidates at diagnosis of acute myeloid leukemia and their clinical significance. Ran D; Schubert M; Taubert I; Eckstein V; Bellos F; Jauch A; Chen H; Bruckner T; Saffrich R; Wuchter P; Ho AD Exp Hematol; 2012 Feb; 40(2):155-65.e1. PubMed ID: 22024109 [TBL] [Abstract][Full Text] [Related]
16. A DEAB-sensitive aldehyde dehydrogenase regulates hematopoietic stem and progenitor cells development during primitive hematopoiesis in zebrafish embryos. Ma AC; Chung MI; Liang R; Leung AY Leukemia; 2010 Dec; 24(12):2090-9. PubMed ID: 20927131 [TBL] [Abstract][Full Text] [Related]
17. Musashi-2 regulates normal hematopoiesis and promotes aggressive myeloid leukemia. Kharas MG; Lengner CJ; Al-Shahrour F; Bullinger L; Ball B; Zaidi S; Morgan K; Tam W; Paktinat M; Okabe R; Gozo M; Einhorn W; Lane SW; Scholl C; Fröhling S; Fleming M; Ebert BL; Gilliland DG; Jaenisch R; Daley GQ Nat Med; 2010 Aug; 16(8):903-8. PubMed ID: 20616797 [TBL] [Abstract][Full Text] [Related]
18. Aldehyde dehydrogenase activity among primary leukemia cells is associated with stem cell features and correlates with adverse clinical outcomes. Ran D; Schubert M; Pietsch L; Taubert I; Wuchter P; Eckstein V; Bruckner T; Zoeller M; Ho AD Exp Hematol; 2009 Dec; 37(12):1423-34. PubMed ID: 19819294 [TBL] [Abstract][Full Text] [Related]
19. Attenuation of microRNA-126 expression that drives CD34+38- stem/progenitor cells in acute myeloid leukemia leads to tumor eradication. de Leeuw DC; Denkers F; Olthof MC; Rutten AP; Pouwels W; Schuurhuis GJ; Ossenkoppele GJ; Smit L Cancer Res; 2014 Apr; 74(7):2094-105. PubMed ID: 24477595 [TBL] [Abstract][Full Text] [Related]
20. Hypothesis: myeloid-restricted hematopoietic stem cells with self-renewal capacity may be the transformation site in acute myeloid leukemia. Satoh C; Ogata K Leuk Res; 2006 Apr; 30(4):491-5. PubMed ID: 16183117 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]