These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 24642055)

  • 1. Effect of ligand binding on the dynamics of trypsin. Comparison of different approaches.
    Ermakova E; Kurbanov R
    J Mol Graph Model; 2014 Apr; 49():99-109. PubMed ID: 24642055
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Independent Metrics for Protein Backbone and Side-Chain Flexibility: Time Scales and Effects of Ligand Binding.
    Fuchs JE; Waldner BJ; Huber RG; von Grafenstein S; Kramer C; Liedl KR
    J Chem Theory Comput; 2015 Mar; 11(3):851-60. PubMed ID: 26579739
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Link between allosteric signal transduction and functional dynamics in a multisubunit enzyme: S-adenosylhomocysteine hydrolase.
    Lee Y; Jeong LS; Choi S; Hyeon C
    J Am Chem Soc; 2011 Dec; 133(49):19807-15. PubMed ID: 22023331
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Profiling the structural determinants for the selectivity of representative factor-Xa and thrombin inhibitors using combined ligand-based and structure-based approaches.
    Bhunia SS; Roy KK; Saxena AK
    J Chem Inf Model; 2011 Aug; 51(8):1966-85. PubMed ID: 21761917
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Secondary binding site of trypsin: revealed by crystal structure of trypsin-peptide complex.
    Shamaladevi N; Pattabhi V
    J Biomol Struct Dyn; 2005 Jun; 22(6):635-42. PubMed ID: 15842169
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trypsin: a case study in the structural determinants of enzyme specificity.
    Hedstrom L
    Biol Chem; 1996; 377(7-8):465-70. PubMed ID: 8922280
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative molecular dynamics of mesophilic and psychrophilic protein homologues studied by 1.2 ns simulations.
    Brandsdal BO; Heimstad ES; Sylte I; Smalås AO
    J Biomol Struct Dyn; 1999 Dec; 17(3):493-506. PubMed ID: 10636084
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combining weak affinity chromatography, NMR spectroscopy and molecular simulations in carbohydrate-lysozyme interaction studies.
    Landström J; Bergström M; Hamark C; Ohlson S; Widmalm G
    Org Biomol Chem; 2012 Apr; 10(15):3019-32. PubMed ID: 22395160
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational analysis of binding of P1 variants to trypsin.
    Brandsdal BO; Aqvist J; Smalås AO
    Protein Sci; 2001 Aug; 10(8):1584-95. PubMed ID: 11468355
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gaussian docking functions.
    McGann MR; Almond HR; Nicholls A; Grant JA; Brown FK
    Biopolymers; 2003 Jan; 68(1):76-90. PubMed ID: 12579581
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cooperative fluctuations of unliganded and substrate-bound HIV-1 protease: a structure-based analysis on a variety of conformations from crystallography and molecular dynamics simulations.
    Kurt N; Scott WR; Schiffer CA; Haliloglu T
    Proteins; 2003 May; 51(3):409-22. PubMed ID: 12696052
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An integrated computational analysis of the structure, dynamics, and ligand binding interactions of the human galectin network.
    Guardia CM; Gauto DF; Di Lella S; Rabinovich GA; Martí MA; Estrin DA
    J Chem Inf Model; 2011 Aug; 51(8):1918-30. PubMed ID: 21702482
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring the Ligand Binding/Unbinding Pathway by Selectively Enhanced Sampling of Ligand in a Protein-Ligand Complex.
    Shao Q; Zhu W
    J Phys Chem B; 2019 Sep; 123(38):7974-7983. PubMed ID: 31478672
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Binding free energies and free energy components from molecular dynamics and Poisson-Boltzmann calculations. Application to amino acid recognition by aspartyl-tRNA synthetase.
    Archontis G; Simonson T; Karplus M
    J Mol Biol; 2001 Feb; 306(2):307-27. PubMed ID: 11237602
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Free energy calculations show that acidic P1 variants undergo large pKa shifts upon binding to trypsin.
    Brandsdal BO; Smalås AO; Aqvist J
    Proteins; 2006 Aug; 64(3):740-8. PubMed ID: 16752417
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insights into internal dynamics of 6-phosphogluconolactonase from Trypanosoma brucei studied by nuclear magnetic resonance and molecular dynamics.
    Calligari PA; Salgado GF; Pelupessy P; Lopes P; Ouazzani J; Bodenhausen G; Abergel D
    Proteins; 2012 Apr; 80(4):1196-210. PubMed ID: 22275079
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing the structure of Mycobacterium tuberculosis MbtA: model validation using molecular dynamics simulations and docking studies.
    Maganti L; Open Source Drug Discovery Consortium ; Ghoshal N
    J Biomol Struct Dyn; 2014; 32(2):273-88. PubMed ID: 23527569
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Noncovalent interaction of oxytetracycline with the enzyme trypsin.
    Chi Z; Liu R; Zhang H
    Biomacromolecules; 2010 Sep; 11(9):2454-9. PubMed ID: 20681619
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein conformational plasticity and complex ligand-binding kinetics explored by atomistic simulations and Markov models.
    Plattner N; Noé F
    Nat Commun; 2015 Jul; 6():7653. PubMed ID: 26134632
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing multimodal ligand binding regions on ubiquitin using nuclear magnetic resonance, chromatography, and molecular dynamics simulations.
    Holstein MA; Chung WK; Parimal S; Freed AS; Barquera B; McCallum SA; Cramer SM
    J Chromatogr A; 2012 Mar; 1229():113-20. PubMed ID: 22281506
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.