BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 24642367)

  • 1. Sensory nerve terminal mitochondrial dysfunction induces hyperexcitability in airway nociceptors via protein kinase C.
    Hadley SH; Bahia PK; Taylor-Clark TE
    Mol Pharmacol; 2014 Jun; 85(6):839-48. PubMed ID: 24642367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antimycin A-induced mitochondrial dysfunction activates vagal sensory neurons via ROS-dependent activation of TRPA1 and ROS-independent activation of TRPV1.
    Stanford KR; Hadley SH; Barannikov I; Ajmo JM; Bahia PK; Taylor-Clark TE
    Brain Res; 2019 Jul; 1715():94-105. PubMed ID: 30914247
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensory nerve terminal mitochondrial dysfunction activates airway sensory nerves via transient receptor potential (TRP) channels.
    Nesuashvili L; Hadley SH; Bahia PK; Taylor-Clark TE
    Mol Pharmacol; 2013 May; 83(5):1007-19. PubMed ID: 23444014
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antimycin A increases bronchopulmonary C-fiber excitability via protein kinase C alpha.
    Bahia PK; Hadley SH; Barannikov I; Sowells I; Kim SH; Taylor-Clark TE
    Respir Physiol Neurobiol; 2020 Jul; 278():103446. PubMed ID: 32360368
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondrial modulation-induced activation of vagal sensory neuronal subsets by antimycin A, but not CCCP or rotenone, correlates with mitochondrial superoxide production.
    Stanford KR; Taylor-Clark TE
    PLoS One; 2018; 13(5):e0197106. PubMed ID: 29734380
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of Qi site of mitochondrial complex III with antimycin A decreases persistent and transient sodium currents via reactive oxygen species and protein kinase C in rat hippocampal CA1 cells.
    Lai B; Zhang L; Dong LY; Zhu YH; Sun FY; Zheng P
    Exp Neurol; 2005 Aug; 194(2):484-94. PubMed ID: 16022873
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acute activation of bronchopulmonary vagal nociceptors by type I interferons.
    Patil MJ; Ru F; Sun H; Wang J; Kolbeck RR; Dong X; Kollarik M; Canning BJ; Undem BJ
    J Physiol; 2020 Dec; 598(23):5541-5554. PubMed ID: 32924209
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Presynaptic inhibition of transient receptor potential vanilloid type 1 (TRPV1) receptors by noradrenaline in nociceptive neurons.
    Chakraborty S; Elvezio V; Kaczocha M; Rebecchi M; Puopolo M
    J Physiol; 2017 Apr; 595(8):2639-2660. PubMed ID: 28094445
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibitor kappaB Kinase beta deficiency in primary nociceptive neurons increases TRP channel sensitivity.
    Bockhart V; Constantin CE; Häussler A; Wijnvoord N; Kanngiesser M; Myrczek T; Pickert G; Popp L; Sobotzik JM; Pasparakis M; Kuner R; Geisslinger G; Schultz C; Kress M; Tegeder I
    J Neurosci; 2009 Oct; 29(41):12919-29. PubMed ID: 19828806
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contribution of TRPV1 to the bradykinin-evoked nociceptive behavior and excitation of cutaneous sensory neurons.
    Katanosaka K; Banik RK; Giron R; Higashi T; Tominaga M; Mizumura K
    Neurosci Res; 2008 Nov; 62(3):168-75. PubMed ID: 18789982
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The production of reactive oxygen species in intact isolated nerve terminals is independent of the mitochondrial membrane potential.
    Sipos I; Tretter L; Adam-Vizi V
    Neurochem Res; 2003 Oct; 28(10):1575-81. PubMed ID: 14570403
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activation characteristics of transient receptor potential ankyrin 1 and its role in nociception.
    Raisinghani M; Zhong L; Jeffry JA; Bishnoi M; Pabbidi RM; Pimentel F; Cao DS; Evans MS; Premkumar LS
    Am J Physiol Cell Physiol; 2011 Sep; 301(3):C587-600. PubMed ID: 21653898
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relative roles of protein kinase A and protein kinase C in modulation of transient receptor potential vanilloid type 1 receptor responsiveness in rat sensory neurons in vitro and peripheral nociceptors in vivo.
    Varga A; Bölcskei K; Szöke E; Almási R; Czéh G; Szolcsányi J; Pethö G
    Neuroscience; 2006 Jun; 140(2):645-57. PubMed ID: 16564637
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Pathophysiology of low back pain and the transition to the chronic state - experimental data and new concepts].
    Mense S
    Schmerz; 2001 Dec; 15(6):413-7. PubMed ID: 11793144
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mrgprd enhances excitability in specific populations of cutaneous murine polymodal nociceptors.
    Rau KK; McIlwrath SL; Wang H; Lawson JJ; Jankowski MP; Zylka MJ; Anderson DJ; Koerber HR
    J Neurosci; 2009 Jul; 29(26):8612-9. PubMed ID: 19571152
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Marked attenuation of inflammatory mediator-induced C-fiber sensitization for mechanical and hypotonic stimuli in TRPV4-/- mice.
    Chen X; Alessandri-Haber N; Levine JD
    Mol Pain; 2007 Oct; 3():31. PubMed ID: 17967183
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms of protease-activated receptor 2-evoked hyperexcitability of nociceptive neurons innervating the mouse colon.
    Kayssi A; Amadesi S; Bautista F; Bunnett NW; Vanner S
    J Physiol; 2007 May; 580(Pt.3):977-91. PubMed ID: 17289784
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TRESK channel contribution to nociceptive sensory neurons excitability: modulation by nerve injury.
    Tulleuda A; Cokic B; Callejo G; Saiani B; Serra J; Gasull X
    Mol Pain; 2011 Apr; 7():30. PubMed ID: 21527011
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Histamine potentiates acid-induced responses mediating transient receptor potential V1 in mouse primary sensory neurons.
    Kajihara Y; Murakami M; Imagawa T; Otsuguro K; Ito S; Ohta T
    Neuroscience; 2010 Mar; 166(1):292-304. PubMed ID: 20006972
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Different role of TTX-sensitive voltage-gated sodium channel (Na
    Kollarik M; Sun H; Herbstsomer RA; Ru F; Kocmalova M; Meeker SN; Undem BJ
    J Physiol; 2018 Apr; 596(8):1419-1432. PubMed ID: 29435993
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.