These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 24642827)

  • 1. Deterministic nanoparticle assemblies: from substrate to solution.
    Barcelo SJ; Kim A; Gibson GA; Norris KJ; Yamakawa M; Li Z
    Nanotechnology; 2014 Apr; 25(15):155302. PubMed ID: 24642827
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of dense two-dimensional assemblies over vast areas comprising gold(core)-silver(shell) nanoparticles and their surface-enhanced Raman scattering properties.
    Sugawa K; Tanoue Y; Ube T; Yanagida S; Yamamuro T; Kusaka Y; Ushijima H; Akiyama T
    Photochem Photobiol Sci; 2014 Jan; 13(1):82-91. PubMed ID: 24220219
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-lithographic SERS substrates: tailoring surface chemistry for Au nanoparticle cluster assembly.
    Adams SM; Campione S; Caldwell JD; Bezares FJ; Culbertson JC; Capolino F; Ragan R
    Small; 2012 Jul; 8(14):2239-49. PubMed ID: 22528745
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of deterministic nanostructure assemblies with sub-nanometer spacing using a nanoimprinting transfer technique.
    Barcelo SJ; Kim A; Wu W; Li Z
    ACS Nano; 2012 Jul; 6(7):6446-52. PubMed ID: 22735072
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatially controlled SERS patterning using photoinduced disassembly of gelated gold nanoparticle aggregates.
    Park JS; Yoon JH; Yoon S
    Langmuir; 2010 Dec; 26(23):17808-11. PubMed ID: 21043462
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecularly-mediated assemblies of plasmonic nanoparticles for Surface-Enhanced Raman Spectroscopy applications.
    Guerrini L; Graham D
    Chem Soc Rev; 2012 Nov; 41(21):7085-107. PubMed ID: 22833008
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hyperbranched polymer-gold nanoparticle assemblies: role of polymer architecture in hybrid assembly formation and SERS activity.
    Dey P; Blakey I; Thurecht KJ; Fredericks PM
    Langmuir; 2014 Mar; 30(8):2249-58. PubMed ID: 24548062
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermo-induced electromagnetic coupling in gold/polymer hybrid plasmonic structures probed by surface-enhanced raman scattering.
    Gehan H; Fillaud L; Chehimi MM; Aubard J; Hohenau A; Felidj N; Mangeney C
    ACS Nano; 2010 Nov; 4(11):6491-500. PubMed ID: 21028846
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Silver nanoparticle thin films with nanocavities for surface-enhanced Raman scattering.
    Kahraman M; Tokman N; Culha M
    Chemphyschem; 2008 Apr; 9(6):902-10. PubMed ID: 18366038
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-molecule Raman spectroscopy: a probe of surface dynamics and plasmonic fields.
    Haran G
    Acc Chem Res; 2010 Aug; 43(8):1135-43. PubMed ID: 20521801
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface-enhanced raman scattering on dendrimer/metallic nanoparticle layer-by-layer film substrates.
    Goulet PJ; dos Santos DS; Alvarez-Puebla RA; Oliveira ON; Aroca RF
    Langmuir; 2005 Jun; 21(12):5576-81. PubMed ID: 15924492
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gold nanoparticle-paper as a three-dimensional surface enhanced Raman scattering substrate.
    Ngo YH; Li D; Simon GP; Garnier G
    Langmuir; 2012 Jun; 28(23):8782-90. PubMed ID: 22594710
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inherently reproducible fabrication of plasmonic nanoparticle arrays for SERS by combining nanoimprint and copolymer lithography.
    Krishnamoorthy S; Krishnan S; Thoniyot P; Low HY
    ACS Appl Mater Interfaces; 2011 Apr; 3(4):1033-40. PubMed ID: 21375254
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Light-Directed Reversible Assembly of Plasmonic Nanoparticles Using Plasmon-Enhanced Thermophoresis.
    Lin L; Peng X; Wang M; Scarabelli L; Mao Z; Liz-Marzán LM; Becker MF; Zheng Y
    ACS Nano; 2016 Oct; 10(10):9659-9668. PubMed ID: 27640212
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The conquest of middle-earth: combining top-down and bottom-up nanofabrication for constructing nanoparticle based devices.
    Diaz Fernandez YA; Gschneidtner TA; Wadell C; Fornander LH; Lara Avila S; Langhammer C; Westerlund F; Moth-Poulsen K
    Nanoscale; 2014 Dec; 6(24):14605-16. PubMed ID: 25208687
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlled step growth of molecularly linked gold nanoparticles: from metallic monomers to dimers to polymeric nanoparticle chains.
    Hussain I; Brust M; Barauskas J; Cooper AI
    Langmuir; 2009 Feb; 25(4):1934-9. PubMed ID: 19159192
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hierarchical Nanoparticle Assemblies Formed via One-Step Catalytic Stamp Pattern Transfer.
    Hung TY; Liu JA; Lee WH; Li JR
    ACS Appl Mater Interfaces; 2019 Jan; 11(4):4667-4677. PubMed ID: 30607942
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-dimensional gradient Ag nanoparticle assemblies: multiscale fabrication and SERS applications.
    He L; Chen X; Mu Y; Song F; Han M
    Nanotechnology; 2010 Dec; 21(49):495601. PubMed ID: 21071822
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced Raman scattering from nanoparticle-decorated nanocone substrates: a practical approach to harness in-plane excitation.
    Hu YS; Jeon J; Seok TJ; Lee S; Hafner JH; Drezek RA; Choo H
    ACS Nano; 2010 Oct; 4(10):5721-30. PubMed ID: 20836500
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.