These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 24642827)

  • 21. Structure-activity relationships in gold nanoparticle dimers and trimers for surface-enhanced Raman spectroscopy.
    Wustholz KL; Henry AI; McMahon JM; Freeman RG; Valley N; Piotti ME; Natan MJ; Schatz GC; Van Duyne RP
    J Am Chem Soc; 2010 Aug; 132(31):10903-10. PubMed ID: 20681724
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Honeycomb architecture of carbon quantum dots: a new efficient substrate to support gold for stronger SERS.
    Fan Y; Cheng H; Zhou C; Xie X; Liu Y; Dai L; Zhang J; Qu L
    Nanoscale; 2012 Mar; 4(5):1776-81. PubMed ID: 22297623
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High surface-enhanced Raman scattering performance of individual gold nanoflowers and their application in live cell imaging.
    Li Q; Jiang Y; Han R; Zhong X; Liu S; Li ZY; Sha Y; Xu D
    Small; 2013 Mar; 9(6):927-32. PubMed ID: 23180641
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bimetallic nanostructures as active Raman markers: gold-nanoparticle assembly on 1D and 2D silver nanostructure surfaces.
    Gunawidjaja R; Kharlampieva E; Choi I; Tsukruk VV
    Small; 2009 Nov; 5(21):2460-6. PubMed ID: 19642091
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nanostructured surfaces and assemblies as SERS media.
    Ko H; Singamaneni S; Tsukruk VV
    Small; 2008 Oct; 4(10):1576-99. PubMed ID: 18844309
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Role of nanoparticle surface charge in surface-enhanced Raman scattering.
    Alvarez-Puebla RA; Arceo E; Goulet PJ; Garrido JJ; Aroca RF
    J Phys Chem B; 2005 Mar; 109(9):3787-92. PubMed ID: 16851426
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Highly reproducible and sensitive surface-enhanced Raman scattering from colloidal plasmonic nanoparticle via stabilization of hot spots in graphene oxide liquid crystal.
    Saha A; Palmal S; Jana NR
    Nanoscale; 2012 Oct; 4(20):6649-57. PubMed ID: 22992658
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Understanding the mechanism of amino acid-based Au nanoparticle chain formation.
    Sethi M; Knecht MR
    Langmuir; 2010 Jun; 26(12):9860-74. PubMed ID: 20392122
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Silica-void-gold nanoparticles: temporally stable surface-enhanced Raman scattering substrates.
    Roca M; Haes AJ
    J Am Chem Soc; 2008 Oct; 130(43):14273-9. PubMed ID: 18831552
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Surface enhanced Raman scattering from layered assemblies of close-packed gold nanoparticles.
    Jung HY; Park YK; Park S; Kim SK
    Anal Chim Acta; 2007 Oct; 602(2):236-43. PubMed ID: 17933609
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nanoparticle-based substrates for surface-enhanced Raman scattering detection of bacterial spores.
    Cheng HW; Huan SY; Yu RQ
    Analyst; 2012 Aug; 137(16):3601-8. PubMed ID: 22745931
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synergistic modulation of surface interaction to assemble metal nanoparticles into two-dimensional arrays with tunable plasmonic properties.
    Jiang L; Zou C; Zhang Z; Sun Y; Jiang Y; Leow W; Liedberg B; Li S; Chen X
    Small; 2014 Feb; 10(3):609-16. PubMed ID: 24039101
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Self-assembly of silver nanoparticles: synthesis, stabilization, optical properties, and application in surface-enhanced Raman scattering.
    Panigrahi S; Praharaj S; Basu S; Ghosh SK; Jana S; Pande S; Vo-Dinh T; Jiang H; Pal T
    J Phys Chem B; 2006 Jul; 110(27):13436-44. PubMed ID: 16821868
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Two-dimensional self-assemblies of silica nanoparticles formed using the "bubble deposition technique".
    Zhang X; Tang G; Yang S; Benattar JJ
    Langmuir; 2010 Nov; 26(22):16828-32. PubMed ID: 20919738
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hierarchical Assembly of Plasmonic Nanoparticle Heterodimer Arrays with Tunable Sub-5 nm Nanogaps.
    Li J; Deng TS; Liu X; Dolan JA; Scherer NF; Nealey PF
    Nano Lett; 2019 Jul; 19(7):4314-4320. PubMed ID: 31184897
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A combined top-down bottom-up approach for introducing nanoparticle networks into nanoelectrode gaps.
    Xu C; van Zalinge H; Pearson JL; Glidle A; Cooper JM; Cumming DR; Haiss W; Yao J; Schiffrin DJ; Proupín-Pérez M; Cosstick R; Nichols RJ
    Nanotechnology; 2006 Jul; 17(14):3333-9. PubMed ID: 19661573
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hybrid surface-enhanced Raman scattering substrate from gold nanoparticle and photonic crystal: maneuverability and uniformity of Raman spectra.
    Wu CY; Huang CC; Jhang JS; Liu AC; Chiang CC; Hsieh ML; Huang PJ; Tuyen le D; Minh le Q; Yang TS; Chau LK; Kan HC; Hsu CC
    Opt Express; 2009 Nov; 17(24):21522-9. PubMed ID: 19997393
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Au nanoparticle arrays with tunable particle gaps by template-assisted electroless deposition for high performance surface-enhanced Raman scattering.
    Mu C; Zhang JP; Xu D
    Nanotechnology; 2010 Jan; 21(1):015604. PubMed ID: 19946166
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bottom-up assembly of colloidal gold and silver nanostructures for designable plasmonic structures and metamaterials.
    Gwo S; Lin MH; He CL; Chen HY; Teranishi T
    Langmuir; 2012 Jun; 28(24):8902-8. PubMed ID: 22372768
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Surface-enhanced Raman scattering from magneto-metal nanoparticle assemblies.
    Qu H; Lai Y; Niu D; Sun S
    Anal Chim Acta; 2013 Feb; 763():38-42. PubMed ID: 23340284
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.