These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 24643045)

  • 1. Mapping of protein-protein interactions of E. coli RNA polymerase with microfluidic mechanical trapping.
    Bates SR; Quake SR
    PLoS One; 2014; 9(3):e91542. PubMed ID: 24643045
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein-protein interactions between sigma(70) region 4 of RNA polymerase and Escherichia coli SoxS, a transcription activator that functions by the prerecruitment mechanism: evidence for "off-DNA" and "on-DNA" interactions.
    Zafar MA; Shah IM; Wolf RE
    J Mol Biol; 2010 Aug; 401(1):13-32. PubMed ID: 20595001
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic evidence for a novel interaction between transcriptional activator SoxS and region 4 of the σ(70) subunit of RNA polymerase at class II SoxS-dependent promoters in Escherichia coli.
    Zafar MA; Sanchez-Alberola N; Wolf RE
    J Mol Biol; 2011 Apr; 407(3):333-53. PubMed ID: 21195716
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Global regulators of transcription in Escherichia coli: mechanisms of action and methods for study.
    Grainger DC; Busby SJ
    Adv Appl Microbiol; 2008; 65():93-113. PubMed ID: 19026863
    [No Abstract]   [Full Text] [Related]  

  • 5. Multiple active centers of multi-subunit RNA polymerases.
    Yuzenkova Y; Roghanian M; Zenkin N
    Transcription; 2012; 3(3):115-8. PubMed ID: 22771945
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel protein--protein interaction between Escherichia coli SoxS and the DNA binding determinant of the RNA polymerase alpha subunit: SoxS functions as a co-sigma factor and redeploys RNA polymerase from UP-element-containing promoters to SoxS-dependent promoters during oxidative stress.
    Shah IM; Wolf RE
    J Mol Biol; 2004 Oct; 343(3):513-32. PubMed ID: 15465042
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Affinity isolation and I-DIRT mass spectrometric analysis of the Escherichia coli O157:H7 Sakai RNA polymerase complex.
    Lee DJ; Busby SJ; Westblade LF; Chait BT
    J Bacteriol; 2008 Feb; 190(4):1284-9. PubMed ID: 18083804
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Two-Way Street: Regulatory Interplay between RNA Polymerase and Nascent RNA Structure.
    Zhang J; Landick R
    Trends Biochem Sci; 2016 Apr; 41(4):293-310. PubMed ID: 26822487
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distinct functions of regions 1.1 and 1.2 of RNA polymerase σ subunits from Escherichia coli and Thermus aquaticus in transcription initiation.
    Miropolskaya N; Ignatov A; Bass I; Zhilina E; Pupov D; Kulbachinskiy A
    J Biol Chem; 2012 Jul; 287(28):23779-89. PubMed ID: 22605342
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantifying the regulatory role of individual transcription factors in Escherichia coli.
    Guharajan S; Chhabra S; Parisutham V; Brewster RC
    Cell Rep; 2021 Nov; 37(6):109952. PubMed ID: 34758318
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mapping E. coli RNA polymerase and associated transcription factors and identifying promoters genome-wide.
    Davis SE; Mooney RA; Kanin EI; Grass J; Landick R; Ansari AZ
    Methods Enzymol; 2011; 498():449-71. PubMed ID: 21601690
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hybrid Bordetella pertussis-Escherichia coli RNA polymerases: selectivity of promoter activation.
    Steffen P; Ullmann A
    J Bacteriol; 1998 Mar; 180(6):1567-9. PubMed ID: 9515928
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bacteriophage T4 MotA activator and the β-flap tip of RNA polymerase target the same set of σ70 carboxyl-terminal residues.
    Bonocora RP; Decker PK; Glass S; Knipling L; Hinton DM
    J Biol Chem; 2011 Nov; 286(45):39290-6. PubMed ID: 21911499
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phenotypic consequences of RNA polymerase dysregulation in Escherichia coli.
    Sarkar P; Switzer A; Peters C; Pogliano J; Wigneshweraraj S
    Nucleic Acids Res; 2017 Nov; 45(19):11131-11143. PubMed ID: 28977482
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcription activation by Escherichia coli Rob at class II promoters: protein-protein interactions between Rob's N-terminal domain and the σ(70) subunit of RNA polymerase.
    Taliaferro LP; Keen EF; Sanchez-Alberola N; Wolf RE
    J Mol Biol; 2012 Jun; 419(3-4):139-57. PubMed ID: 22465792
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcription is regulated by NusA:NusG interaction.
    Strauß M; Vitiello C; Schweimer K; Gottesman M; Rösch P; Knauer SH
    Nucleic Acids Res; 2016 Jul; 44(12):5971-82. PubMed ID: 27174929
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proteolysis of sigmaS (RpoS) and the general stress response in Escherichia coli.
    Hengge R
    Res Microbiol; 2009 Nov; 160(9):667-76. PubMed ID: 19765651
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of a novel RNA polymerase mutant that alters DksA activity.
    Satory D; Halliday JA; Sivaramakrishnan P; Lua RC; Herman C
    J Bacteriol; 2013 Sep; 195(18):4187-94. PubMed ID: 23852871
    [TBL] [Abstract][Full Text] [Related]  

  • 19. N- and C-terminal regions of the quorum-sensing activator TraR cooperate in interactions with the alpha and sigma-70 components of RNA polymerase.
    Qin Y; Keenan C; Farrand SK
    Mol Microbiol; 2009 Oct; 74(2):330-46. PubMed ID: 19732344
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flipping states: a few key residues decide the winning conformation of the only universally conserved transcription factor.
    Shi D; Svetlov D; Abagyan R; Artsimovitch I
    Nucleic Acids Res; 2017 Sep; 45(15):8835-8843. PubMed ID: 28605514
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.