These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 24643243)

  • 1. Essential gene identification and drug target prioritization in Leishmania species.
    Paul ML; Kaur A; Geete A; Sobhia ME
    Mol Biosyst; 2014 May; 10(5):1184-95. PubMed ID: 24643243
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural insights into the enzymes of the trypanothione pathway: targets for antileishmaniasis drugs.
    Colotti G; Baiocco P; Fiorillo A; Boffi A; Poser E; Chiaro FD; Ilari A
    Future Med Chem; 2013 Oct; 5(15):1861-75. PubMed ID: 24144416
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification and binding mode of a novel Leishmania Trypanothione reductase inhibitor from high throughput screening.
    Turcano L; Torrente E; Missineo A; Andreini M; Gramiccia M; Di Muccio T; Genovese I; Fiorillo A; Harper S; Bresciani A; Colotti G; Ilari A
    PLoS Negl Trop Dis; 2018 Nov; 12(11):e0006969. PubMed ID: 30475811
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeting Trypanothione Reductase, a Key Enzyme in the Redox Trypanosomatid Metabolism, to Develop New Drugs against Leishmaniasis and Trypanosomiases.
    Battista T; Colotti G; Ilari A; Fiorillo A
    Molecules; 2020 Apr; 25(8):. PubMed ID: 32326257
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolutionary relationships among protein lysine deacetylases of parasites causing neglected diseases.
    Scholte LLS; Mourão MM; Pais FS; Melesina J; Robaa D; Volpini AC; Sippl W; Pierce RJ; Oliveira G; Nahum LA
    Infect Genet Evol; 2017 Sep; 53():175-188. PubMed ID: 28506839
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative modeling of thioredoxin glutathione reductase from Schistosoma mansoni: a multifunctional target for antischistosomal therapy.
    Sharma M; Khanna S; Bulusu G; Mitra A
    J Mol Graph Model; 2009 Feb; 27(6):665-75. PubMed ID: 19070522
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An overview of biochemically characterized drug targets in metabolic pathways of Leishmania parasite.
    Raj S; Sasidharan S; Balaji SN; Saudagar P
    Parasitol Res; 2020 Jul; 119(7):2025-2037. PubMed ID: 32504119
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cloning and expression of trypanothione reductase from a New World Leishmania species.
    Castro-Pinto DB; Genestra M; Menezes GB; Waghabi M; Gonçalves A; De Nigris Del Cistia C; Sant'Anna CM; Leon LL; Mendonça-Lima L
    Arch Microbiol; 2008 Apr; 189(4):375-84. PubMed ID: 18060667
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular modeling, structural analysis and identification of ligand binding sites of trypanothione reductase from Leishmania mexicana.
    Mutlu O
    J Vector Borne Dis; 2013 Mar; 50(1):38-44. PubMed ID: 23703438
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetically Validated Drug Targets in Leishmania: Current Knowledge and Future Prospects.
    Jones NG; Catta-Preta CMC; Lima APCA; Mottram JC
    ACS Infect Dis; 2018 Apr; 4(4):467-477. PubMed ID: 29384366
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular basis of antimony treatment in leishmaniasis.
    Baiocco P; Colotti G; Franceschini S; Ilari A
    J Med Chem; 2009 Apr; 52(8):2603-12. PubMed ID: 19317451
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Divergence of trypanothione-dependent tryparedoxin cascade into cytosolic and mitochondrial pathways in arsenite-resistant variants of Leishmania amazonensis.
    Hsu JY; Lin YC; Chiang SC; Lee ST
    Mol Biochem Parasitol; 2008 Feb; 157(2):193-204. PubMed ID: 18083246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protease inhibitors in potential drug development for Leishmaniasis.
    Das P; Alam MN; Paik D; Karmakar K; De T; Chakraborti T
    Indian J Biochem Biophys; 2013 Oct; 50(5):363-76. PubMed ID: 24772958
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulatory dynamics of network architecture and function in tristable genetic circuit of Leishmania: a mathematical biology approach.
    Mandlik V; Gurav M; Singh S
    J Biomol Struct Dyn; 2015; 33(12):2554-62. PubMed ID: 26264745
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Leishmania spp.: proficiency of drug-resistant parasites.
    Natera S; Machuca C; Padrón-Nieves M; Romero A; Díaz E; Ponte-Sucre A
    Int J Antimicrob Agents; 2007 Jun; 29(6):637-42. PubMed ID: 17353113
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzymes of parasite thiol metabolism as drug targets.
    Krauth-Siegel RL; Coombs GH
    Parasitol Today; 1999 Oct; 15(10):404-9. PubMed ID: 10481152
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular adaptability of nucleoside diphosphate kinase b from trypanosomatid parasites: stability, oligomerization and structural determinants of nucleotide binding.
    Souza TA; Trindade DM; Tonoli CC; Santos CR; Ward RJ; Arni RK; Oliveira AH; Murakami MT
    Mol Biosyst; 2011 Jul; 7(7):2189-95. PubMed ID: 21528129
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Leishmania-macrophage interactions: insights into the redox biology.
    Van Assche T; Deschacht M; da Luz RA; Maes L; Cos P
    Free Radic Biol Med; 2011 Jul; 51(2):337-51. PubMed ID: 21620959
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA topoisomerases of Leishmania: the potential targets for anti-leishmanial therapy.
    Das BB; Ganguly A; Majumder HK
    Adv Exp Med Biol; 2008; 625():103-15. PubMed ID: 18365662
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulation in aquaglyceroporin AQP1 gene transcript levels in drug-resistant Leishmania.
    Marquis N; Gourbal B; Rosen BP; Mukhopadhyay R; Ouellette M
    Mol Microbiol; 2005 Sep; 57(6):1690-9. PubMed ID: 16135234
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.