These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 24643243)

  • 21. Structural and evolutionary analysis of Leishmania Alba proteins.
    da Costa KS; Galúcio JMP; Leonardo ES; Cardoso G; Leal É; Conde G; Lameira J
    Mol Biochem Parasitol; 2017 Oct; 217():23-31. PubMed ID: 28847609
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biochemical and genetic tests for inhibitors of Leishmania pteridine pathways.
    Hardy LW; Matthews W; Nare B; Beverley SM
    Exp Parasitol; 1997 Nov; 87(3):157-69. PubMed ID: 9371081
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Foreword. Trypanosomatid disease drug discovery and target identification.
    N Setzer W
    Future Med Chem; 2013 Oct; 5(15):1703-4. PubMed ID: 24144406
    [No Abstract]   [Full Text] [Related]  

  • 24. Interactions of antiparasitic alkaloids with Leishmania protein targets: a molecular docking analysis.
    Ogungbe IV; Ng JD; Setzer WN
    Future Med Chem; 2013 Oct; 5(15):1777-99. PubMed ID: 24144413
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Joining forces: first application of a rapamycin-induced dimerizable Cre system for conditional null mutant analysis in Leishmania.
    Späth GF; Clos J
    Mol Microbiol; 2016 Jun; 100(6):923-7. PubMed ID: 26991431
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In silico work flow for scaffold hopping in Leishmania.
    Waugh B; Ghosh A; Bhattacharyya D; Ghoshal N; Banerjee R
    BMC Res Notes; 2014 Nov; 7():802. PubMed ID: 25399834
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Homology modeling of T. cruzi and L. major NADH-dependent fumarate reductases: ligand docking, molecular dynamics validation, and insights on their binding modes.
    Merlino A; Vieites M; Gambino D; Coitiño EL
    J Mol Graph Model; 2014 Mar; 48():47-59. PubMed ID: 24370672
    [TBL] [Abstract][Full Text] [Related]  

  • 28. (Post-) Genomic approaches to tackle drug resistance in Leishmania.
    Berg M; Mannaert A; Vanaerschot M; Van Der Auwera G; Dujardin JC
    Parasitology; 2013 Oct; 140(12):1492-505. PubMed ID: 23480865
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Advances and perspectives in Leishmania cell based drug-screening procedures.
    Sereno D; Cordeiro da Silva A; Mathieu-Daude F; Ouaissi A
    Parasitol Int; 2007 Mar; 56(1):3-7. PubMed ID: 17079188
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Gene amplification in amphotericin B-resistant Leishmania tarentolae.
    Singh AK; Papadopoulou B; Ouellette M
    Exp Parasitol; 2001 Nov; 99(3):141-7. PubMed ID: 11846524
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The role of reduced pterins in resistance to reactive oxygen and nitrogen intermediates in the protozoan parasite Leishmania.
    Moreira W; Leblanc E; Ouellette M
    Free Radic Biol Med; 2009 Feb; 46(3):367-75. PubMed ID: 19022374
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modes of action of Leishmanicidal antimicrobial peptides.
    Marr AK; McGwire BS; McMaster WR
    Future Microbiol; 2012 Sep; 7(9):1047-59. PubMed ID: 22953706
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Glycobiology of the Leishmania parasite and emerging targets for antileishmanial drug discovery.
    Chandra S; Ruhela D; Deb A; Vishwakarma RA
    Expert Opin Ther Targets; 2010 Jul; 14(7):739-57. PubMed ID: 20536412
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An in silico approach in identification of drug targets in Leishmania: A subtractive genomic and metabolic simulation analysis.
    Meshram RJ; Goundge MB; Kolte BS; Gacche RN
    Parasitol Int; 2019 Apr; 69():59-70. PubMed ID: 30503238
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genetics. Leishmania exploit sex.
    Miles MA; Yeo M; Mauricio IL
    Science; 2009 Apr; 324(5924):187-9. PubMed ID: 19359570
    [No Abstract]   [Full Text] [Related]  

  • 36. Antimicrobial peptides for leishmaniasis.
    Cobb SL; Denny PW
    Curr Opin Investig Drugs; 2010 Aug; 11(8):868-75. PubMed ID: 20721829
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Discovery of factors linked to antimony resistance in Leishmania panamensis through differential proteome analysis.
    Walker J; Gongora R; Vasquez JJ; Drummelsmith J; Burchmore R; Roy G; Ouellette M; Gomez MA; Saravia NG
    Mol Biochem Parasitol; 2012 Jun; 183(2):166-76. PubMed ID: 22449941
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The parasite-specific trypanothione metabolism of trypanosoma and leishmania.
    Krauth-Siegel RL; Meiering SK; Schmidt H
    Biol Chem; 2003 Apr; 384(4):539-49. PubMed ID: 12751784
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular mechanisms of antimony resistance in Leishmania.
    Ashutosh ; Sundar S; Goyal N
    J Med Microbiol; 2007 Feb; 56(Pt 2):143-53. PubMed ID: 17244793
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Inhibition of Leishmania infantum trypanothione reductase by azole-based compounds: a comparative analysis with its physiological substrate by X-ray crystallography.
    Baiocco P; Poce G; Alfonso S; Cocozza M; Porretta GC; Colotti G; Biava M; Moraca F; Botta M; Yardley V; Fiorillo A; Lantella A; Malatesta F; Ilari A
    ChemMedChem; 2013 Jul; 8(7):1175-83. PubMed ID: 23733388
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.